Spaces:
Sleeping
Sleeping
File size: 7,035 Bytes
d6fbb7e 10e9b7d d6fbb7e 10e9b7d eccf8e4 3c4371f 10e9b7d d6fbb7e e80aab9 3db6293 e80aab9 d6fbb7e 31243f4 d6fbb7e 31243f4 d6fbb7e 3c4371f d6fbb7e e80aab9 d6fbb7e 31243f4 64f69a0 31243f4 3c4371f d6fbb7e 3c4371f d6fbb7e 31243f4 eccf8e4 d6fbb7e 7d65c66 31243f4 7d65c66 d6fbb7e e80aab9 d6fbb7e 7d65c66 3c4371f d6fbb7e 31243f4 d6fbb7e 31243f4 d6fbb7e 31243f4 d6fbb7e 31243f4 d6fbb7e 7d65c66 31243f4 d6fbb7e 31243f4 d6fbb7e e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f d6fbb7e e80aab9 d6fbb7e 7d65c66 d6fbb7e 31243f4 d6fbb7e e80aab9 d6fbb7e e80aab9 d6fbb7e 7e4a06b d6fbb7e a640e6e d6fbb7e e80aab9 3c4371f d6fbb7e 7d65c66 d6fbb7e 3c4371f d6fbb7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
"""
app.py
This script provides the Gradio web interface to run the evaluation for the
Hugging Face Agents course. It fetches questions from a server, runs the
agent defined in agent.py on them, and submits the answers for scoring.
"""
import os
import re # <-- 1. ADDED IMPORT for Regular Expressions
import gradio as gr
import requests
import pandas as pd
# --- Import your agent's factory function ---
from agent import create_agent_executor # <-- 2. ADDED IMPORT for your agent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- DELETED BasicAgent class as it's no longer needed ---
# --- 3. ADDED HELPER FUNCTION TO PARSE THE AGENT'S OUTPUT ---
def parse_final_answer(agent_response: str) -> str:
"""
Extracts the final answer from the agent's full response string.
The agent is prompted to return 'FINAL ANSWER: [answer]'.
This function isolates and returns '[answer]'.
"""
# Use a regular expression to find the text after "FINAL ANSWER:"
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
if match:
# If a match is found, return the captured group, stripped of whitespace
return match.group(1).strip()
# As a fallback, if the specific format is not found, return the last non-empty line
lines = [line for line in agent_response.split('\n') if line.strip()]
if lines:
return lines[-1].strip()
# If all else fails, return a default message
return "Could not parse a final answer."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
if not profile:
print("User not logged in.")
return "Please log in to Hugging Face with the button above to submit.", None
username = profile.username
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
# --- 4. MODIFIED AGENT INSTANTIATION AND EXECUTION ---
# 1. Instantiate Agent (using your factory function from agent.py)
print("Initializing your custom agent...")
try:
agent_executor = create_agent_executor(provider="groq") # or "groq"
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
# 2. Fetch Questions (this part is correct)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Run your Agent (THIS IS THE MOST IMPORTANTLY CORRECTED SECTION)
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing data: {item}")
continue
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
print(f"Question: {question_text}")
try:
# CORRECT INVOCATION: Use the agent_executor with the .invoke() method
# The input must be a dictionary with a "messages" key
result = agent_executor.invoke({"messages": [("user", question_text)]})
# The agent's final response is in the 'messages' list of the output
raw_answer = result['messages'][-1].content
# Use our helper function to extract the clean answer
submitted_answer = parse_final_answer(raw_answer)
print(f"Raw LLM Response: '{raw_answer}'")
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"!! AGENT ERROR on task {task_id}: {e}")
# It's important to log errors so you can see them in the UI
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare and 5. Submit (these parts are correct)
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)"
)
print("Submission successful.")
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks (This part is correct) ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
gr.Markdown("Run your custom agent against the evaluation questions and submit for a score.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, row_count=10)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# The startup info logs are helpful, so we keep them.
space_id_startup = os.getenv("SPACE_ID")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID environment variable not found (likely running locally).")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface...")
demo.launch() |