test_MIIA / app.py
AC-Angelo93's picture
Update app.py
49bf197 verified
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import huggingface_hub
import os
import torch
# --- Configuration ---
MODEL_ID = "Fastweb/FastwebMIIA-7B"
HF_TOKEN = os.getenv("HF_TOKEN") # For Hugging Face Spaces, set this as a Secret
# Global variable to store the pipeline
text_generator_pipeline = None
model_load_error = None # To store any error message during model loading
# --- Hugging Face Login and Model Loading ---
def load_model_and_pipeline():
global text_generator_pipeline, model_load_error
if text_generator_pipeline is not None:
print("Model already loaded.")
return True # Already loaded
if not HF_TOKEN:
model_load_error = "Hugging Face token (HF_TOKEN) not found in Space secrets. Please add it and restart the Space."
print(f"ERROR: {model_load_error}")
return False
try:
print(f"Attempting to login to Hugging Face Hub with token...")
huggingface_hub.login(token=HF_TOKEN)
print("Login successful.")
print(f"Loading tokenizer for {MODEL_ID}...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True,
use_fast=False # As recommended by the model card
)
# Llama models often don't have a pad token set by default
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded.")
print(f"Loading model {MODEL_ID}...")
# For large models, specify dtype and device_map
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance and memory if supported
device_map="auto" # Automatically distribute model across available GPUs/CPU
)
print("Model loaded.")
text_generator_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
# device_map="auto" handles device placement, so no need for device=0 here
)
print("Text generation pipeline created successfully.")
model_load_error = None
return True
except Exception as e:
model_load_error = f"Error loading model/pipeline: {str(e)}. Check model name, token, and Space resources (RAM/GPU)."
print(f"ERROR: {model_load_error}")
text_generator_pipeline = None # Ensure it's None on error
return False
# --- Text Analysis Function ---
def analyze_text(text_input, file_upload, custom_instruction, max_new_tokens, temperature, top_p):
global text_generator_pipeline, model_load_error
if text_generator_pipeline is None:
if model_load_error:
return f"Model not loaded. Error: {model_load_error}"
else:
return "Model is not loaded or still loading. Please check Space logs for errors (especially OOM) and ensure HF_TOKEN is set and you've accepted model terms. If on CPU, it may take a very long time or fail due to memory."
content_to_analyze = ""
if file_upload is not None:
try:
with open(file_upload.name, 'r', encoding='utf-8') as f:
content_to_analyze = f.read()
if not content_to_analyze.strip() and not text_input.strip():
return "Uploaded file is empty and no direct text input provided. Please provide some text."
elif not content_to_analyze.strip() and text_input.strip():
content_to_analyze = text_input
except Exception as e:
return f"Error reading uploaded file: {str(e)}"
elif text_input:
content_to_analyze = text_input
else:
return "Please provide text directly or upload a document."
if not content_to_analyze.strip():
return "Input text is empty."
# Using Llama 2 Chat Format
# <s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{user_prompt} [/INST]
# For text analysis, the "instruction" is the user_prompt, and the "text_input" is part of it.
system_prompt = "You are a helpful AI assistant specialized in text analysis. Perform the requested task on the provided text."
user_message = f"{custom_instruction}\n\nHere is the text:\n```\n{content_to_analyze}\n```"
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
try:
# Use tokenizer.apply_chat_template if available (transformers >= 4.34.0)
prompt = text_generator_pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e:
print(f"Warning: Could not use apply_chat_template ({e}). Falling back to manual formatting.")
# Manual Llama 2 chat format
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{user_message} [/INST]"
print(f"\n--- Sending to Model ---")
print(f"Full Prompt:\n{prompt}")
print(f"Max New Tokens: {max_new_tokens}, Temperature: {temperature}, Top P: {top_p}")
print("------------------------\n")
try:
generated_outputs = text_generator_pipeline(
prompt,
max_new_tokens=int(max_new_tokens),
do_sample=True,
temperature=float(temperature) if float(temperature) > 0.01 else 0.01, # Temperature 0 can be problematic
top_p=float(top_p),
num_return_sequences=1,
eos_token_id=text_generator_pipeline.tokenizer.eos_token_id,
pad_token_id=text_generator_pipeline.tokenizer.pad_token_id # Use the set pad_token
)
response_full = generated_outputs[0]['generated_text']
# Extract only the assistant's response part
# The model's actual answer starts after the [/INST] token.
answer_marker = "[/INST]"
if answer_marker in response_full:
response_text = response_full.split(answer_marker, 1)[1].strip()
else:
# Fallback if the full prompt wasn't returned, might happen with some pipeline configs
# or if the model didn't fully adhere to the template in its output.
# This is less ideal, but better than nothing.
response_text = response_full.replace(prompt, "").strip() # Try to remove the input prompt
return response_text
except Exception as e:
return f"Error during text generation: {str(e)}"
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# 📝 Text Analysis with {MODEL_ID}
Test the capabilities of the `{MODEL_ID}` model for text analysis tasks on Italian or English texts.
Provide an instruction and your text (directly or via upload).
**Important:** Model loading can take a few minutes, especially on the first run or on CPU.
This app is best run on a Hugging Face Space with GPU resources (e.g., T4-small or A10G-small) for this 7B model.
""")
with gr.Row():
status_textbox = gr.Textbox(label="Model Status", value="Initializing...", interactive=False, scale=3)
current_hardware = os.getenv("SPACE_HARDWARE", "Unknown (likely local or unspecified)")
gr.Markdown(f"Running on: **{current_hardware}**")
with gr.Tab("Text Input & Analysis"):
with gr.Row():
with gr.Column(scale=2):
instruction_prompt = gr.Textbox(
label="Instruction for the Model (Cosa vuoi fare con il testo?)",
value="Riassumi questo testo in 3 frasi concise.",
lines=3,
placeholder="Example: Riassumi questo testo. / Summarize this text. / Estrai le entità nominate. / Identify named entities."
)
text_area_input = gr.Textbox(label="Enter Text Directly / Inserisci il testo direttamente", lines=10, placeholder="Paste your text here or upload a file below...")
file_input = gr.File(label="Or Upload a Document (.txt) / O carica un documento (.txt)", file_types=['.txt'])
with gr.Column(scale=3):
output_text = gr.Textbox(label="Model Output / Risultato del Modello", lines=20, interactive=False)
with gr.Accordion("Advanced Generation Parameters", open=False):
max_new_tokens_slider = gr.Slider(minimum=10, maximum=2048, value=256, step=10, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.01, maximum=2.0, value=0.7, step=0.01, label="Temperature (higher is more creative, 0.01 for more deterministic)")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P (nucleus sampling)")
analyze_button = gr.Button("🧠 Analyze Text / Analizza Testo", variant="primary")
analyze_button.click(
fn=analyze_text,
inputs=[text_area_input, file_input, instruction_prompt, max_new_tokens_slider, temperature_slider, top_p_slider],
outputs=output_text
)
# Load the model when the app starts.
# This will update the status_textbox after attempting to load.
def startup_load_model():
print("Gradio app starting, attempting to load model...")
if load_model_and_pipeline():
return "Model loaded successfully and ready."
else:
return f"Failed to load model. Error: {model_load_error or 'Unknown error during startup. Check Space logs.'}"
demo.load(startup_load_model, outputs=status_textbox)
if __name__ == "__main__":
# For local testing (ensure HF_TOKEN is set as an environment variable or you're logged in via CLI)
# You would run: HF_TOKEN="your_hf_token_here" python app.py
if not HF_TOKEN and "HF_TOKEN" not in os.environ:
print("WARNING: HF_TOKEN environment variable not set.")
print("For local execution, either set HF_TOKEN or ensure you are logged in via 'huggingface-cli login'.")
try:
from huggingface_hub import HfApi
hf_api = HfApi()
token = hf_api.token
if token:
os.environ['HF_TOKEN'] = token # Set it for the current process
HF_TOKEN = token # also update the global variable used by the script
print("Using token from huggingface-cli login.")
else:
print("Could not retrieve token from CLI login. Model access might fail.")
except Exception as e:
print(f"Could not check CLI login status: {e}. Model access might fail.")
print("Launching Gradio interface...")
demo.queue().launch(debug=True, share=False) # share=True for public link if local