Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,16 +10,17 @@ HF_TOKEN = os.getenv("HF_TOKEN") # For Hugging Face Spaces, set this as a Secre
|
|
10 |
|
11 |
# Global variable to store the pipeline
|
12 |
text_generator_pipeline = None
|
13 |
-
model_load_error = None
|
14 |
|
15 |
# --- Hugging Face Login and Model Loading ---
|
16 |
def load_model_and_pipeline():
|
17 |
global text_generator_pipeline, model_load_error
|
18 |
if text_generator_pipeline is not None:
|
|
|
19 |
return True # Already loaded
|
20 |
|
21 |
if not HF_TOKEN:
|
22 |
-
model_load_error = "Hugging Face token (HF_TOKEN) not found in Space secrets. Please add it."
|
23 |
print(f"ERROR: {model_load_error}")
|
24 |
return False
|
25 |
|
@@ -29,30 +30,31 @@ def load_model_and_pipeline():
|
|
29 |
print("Login successful.")
|
30 |
|
31 |
print(f"Loading tokenizer for {MODEL_ID}...")
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
print("Tokenizer loaded.")
|
35 |
|
36 |
print(f"Loading model {MODEL_ID}...")
|
37 |
# For large models, specify dtype and device_map
|
38 |
-
# device_map="auto" will try to use GPU if available, otherwise CPU
|
39 |
-
# torch_dtype="auto" or torch.bfloat16 (if supported by hardware) can save memory
|
40 |
-
# On CPU Spaces (free tier), this will be VERY slow or might OOM.
|
41 |
-
# You might need to use quantization (e.g., bitsandbytes) for CPU, but that's more complex.
|
42 |
model = AutoModelForCausalLM.from_pretrained(
|
43 |
MODEL_ID,
|
44 |
trust_remote_code=True,
|
45 |
-
torch_dtype=
|
46 |
-
device_map="auto"
|
47 |
)
|
48 |
print("Model loaded.")
|
49 |
|
50 |
-
# MIIA is an instruct/chat model, so text-generation is the appropriate task
|
51 |
text_generator_pipeline = pipeline(
|
52 |
"text-generation",
|
53 |
model=model,
|
54 |
tokenizer=tokenizer,
|
55 |
-
#
|
56 |
)
|
57 |
print("Text generation pipeline created successfully.")
|
58 |
model_load_error = None
|
@@ -71,21 +73,17 @@ def analyze_text(text_input, file_upload, custom_instruction, max_new_tokens, te
|
|
71 |
if model_load_error:
|
72 |
return f"Model not loaded. Error: {model_load_error}"
|
73 |
else:
|
74 |
-
return "Model is not loaded. Please ensure HF_TOKEN is set and
|
75 |
|
76 |
content_to_analyze = ""
|
77 |
if file_upload is not None:
|
78 |
try:
|
79 |
-
# file_upload is a TemporaryFileWrapper object, .name gives the path
|
80 |
with open(file_upload.name, 'r', encoding='utf-8') as f:
|
81 |
content_to_analyze = f.read()
|
82 |
-
if not content_to_analyze.strip() and not text_input.strip():
|
83 |
return "Uploaded file is empty and no direct text input provided. Please provide some text."
|
84 |
-
elif not content_to_analyze.strip() and text_input.strip():
|
85 |
content_to_analyze = text_input
|
86 |
-
# If file has content, it will be used. If user also typed, file content takes precedence.
|
87 |
-
# We could add logic to concatenate or choose, but this is simpler.
|
88 |
-
|
89 |
except Exception as e:
|
90 |
return f"Error reading uploaded file: {str(e)}"
|
91 |
elif text_input:
|
@@ -96,61 +94,61 @@ def analyze_text(text_input, file_upload, custom_instruction, max_new_tokens, te
|
|
96 |
if not content_to_analyze.strip():
|
97 |
return "Input text is empty."
|
98 |
|
99 |
-
#
|
100 |
-
#
|
101 |
-
#
|
102 |
-
# ### Instruction:
|
103 |
-
# {your instruction}
|
104 |
-
# ### Input:
|
105 |
-
# {your text}
|
106 |
-
# ### Response:
|
107 |
-
# {model generates this}
|
108 |
-
|
109 |
-
prompt = f"""Di seguito è riportata un'istruzione che descrive un task, abbinata a un input che fornisce un contesto più ampio. Scrivi una risposta che completi la richiesta in modo appropriato.
|
110 |
-
|
111 |
-
### Istruzione:
|
112 |
-
{custom_instruction}
|
113 |
|
114 |
-
|
115 |
-
{content_to_analyze}
|
116 |
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
print(f"\n--- Sending to Model ---")
|
129 |
-
print(f"Prompt:\n{prompt}")
|
130 |
print(f"Max New Tokens: {max_new_tokens}, Temperature: {temperature}, Top P: {top_p}")
|
131 |
print("------------------------\n")
|
132 |
|
133 |
try:
|
134 |
-
# Note: text-generation pipelines often return the prompt + completion.
|
135 |
-
# We might need to strip the prompt from the output if desired.
|
136 |
generated_outputs = text_generator_pipeline(
|
137 |
prompt,
|
138 |
max_new_tokens=int(max_new_tokens),
|
139 |
do_sample=True,
|
140 |
-
temperature=float(temperature) if float(temperature) > 0 else 0.
|
141 |
top_p=float(top_p),
|
142 |
-
num_return_sequences=1
|
|
|
|
|
143 |
)
|
144 |
-
|
145 |
|
146 |
-
#
|
147 |
-
# The model
|
148 |
-
answer_marker = "
|
149 |
-
if answer_marker in
|
150 |
-
|
151 |
else:
|
152 |
-
# Fallback if the
|
153 |
-
|
|
|
|
|
|
|
|
|
154 |
|
155 |
except Exception as e:
|
156 |
return f"Error during text generation: {str(e)}"
|
@@ -162,31 +160,35 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
162 |
Test the capabilities of the `{MODEL_ID}` model for text analysis tasks on Italian or English texts.
|
163 |
Provide an instruction and your text (directly or via upload).
|
164 |
**Important:** Model loading can take a few minutes, especially on the first run or on CPU.
|
165 |
-
This app is best run on a Hugging Face Space with GPU resources for this model
|
166 |
""")
|
167 |
|
168 |
with gr.Row():
|
169 |
-
status_textbox = gr.Textbox(label="Model Status", value="
|
|
|
|
|
|
|
170 |
|
171 |
with gr.Tab("Text Input & Analysis"):
|
172 |
with gr.Row():
|
173 |
with gr.Column(scale=2):
|
174 |
instruction_prompt = gr.Textbox(
|
175 |
-
label="Instruction for the Model (
|
176 |
value="Riassumi questo testo in 3 frasi concise.",
|
177 |
-
lines=3
|
|
|
178 |
)
|
179 |
-
text_area_input = gr.Textbox(label="Enter Text Directly", lines=10, placeholder="Paste your text here...")
|
180 |
-
file_input = gr.File(label="Or Upload a Document (.txt)", file_types=['.txt'])
|
181 |
with gr.Column(scale=3):
|
182 |
-
output_text = gr.Textbox(label="Model Output", lines=20, interactive=False)
|
183 |
|
184 |
with gr.Accordion("Advanced Generation Parameters", open=False):
|
185 |
-
max_new_tokens_slider = gr.Slider(minimum=
|
186 |
-
temperature_slider = gr.Slider(minimum=0.
|
187 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P (nucleus sampling)")
|
188 |
|
189 |
-
analyze_button = gr.Button("🧠 Analyze Text", variant="primary")
|
190 |
|
191 |
analyze_button.click(
|
192 |
fn=analyze_text,
|
@@ -197,10 +199,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
197 |
# Load the model when the app starts.
|
198 |
# This will update the status_textbox after attempting to load.
|
199 |
def startup_load_model():
|
|
|
200 |
if load_model_and_pipeline():
|
201 |
return "Model loaded successfully and ready."
|
202 |
else:
|
203 |
-
return f"Failed to load model. Error: {model_load_error or 'Unknown error during startup.'}"
|
204 |
|
205 |
demo.load(startup_load_model, outputs=status_textbox)
|
206 |
|
@@ -208,18 +211,21 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
208 |
if __name__ == "__main__":
|
209 |
# For local testing (ensure HF_TOKEN is set as an environment variable or you're logged in via CLI)
|
210 |
# You would run: HF_TOKEN="your_hf_token_here" python app.py
|
211 |
-
# If not set, it will fail unless you've done `huggingface-cli login`
|
212 |
if not HF_TOKEN and "HF_TOKEN" not in os.environ:
|
213 |
print("WARNING: HF_TOKEN environment variable not set.")
|
214 |
print("For local execution, either set HF_TOKEN or ensure you are logged in via 'huggingface-cli login'.")
|
215 |
-
# Attempt to use CLI login if available
|
216 |
try:
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
print("Using token from huggingface-cli login.")
|
220 |
else:
|
221 |
print("Could not retrieve token from CLI login. Model access might fail.")
|
222 |
except Exception as e:
|
223 |
print(f"Could not check CLI login status: {e}. Model access might fail.")
|
224 |
|
|
|
225 |
demo.queue().launch(debug=True, share=False) # share=True for public link if local
|
|
|
10 |
|
11 |
# Global variable to store the pipeline
|
12 |
text_generator_pipeline = None
|
13 |
+
model_load_error = None # To store any error message during model loading
|
14 |
|
15 |
# --- Hugging Face Login and Model Loading ---
|
16 |
def load_model_and_pipeline():
|
17 |
global text_generator_pipeline, model_load_error
|
18 |
if text_generator_pipeline is not None:
|
19 |
+
print("Model already loaded.")
|
20 |
return True # Already loaded
|
21 |
|
22 |
if not HF_TOKEN:
|
23 |
+
model_load_error = "Hugging Face token (HF_TOKEN) not found in Space secrets. Please add it and restart the Space."
|
24 |
print(f"ERROR: {model_load_error}")
|
25 |
return False
|
26 |
|
|
|
30 |
print("Login successful.")
|
31 |
|
32 |
print(f"Loading tokenizer for {MODEL_ID}...")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
+
MODEL_ID,
|
35 |
+
trust_remote_code=True,
|
36 |
+
use_fast=False # As recommended by the model card
|
37 |
+
)
|
38 |
+
# Llama models often don't have a pad token set by default
|
39 |
+
if tokenizer.pad_token is None:
|
40 |
+
tokenizer.pad_token = tokenizer.eos_token
|
41 |
print("Tokenizer loaded.")
|
42 |
|
43 |
print(f"Loading model {MODEL_ID}...")
|
44 |
# For large models, specify dtype and device_map
|
|
|
|
|
|
|
|
|
45 |
model = AutoModelForCausalLM.from_pretrained(
|
46 |
MODEL_ID,
|
47 |
trust_remote_code=True,
|
48 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance and memory if supported
|
49 |
+
device_map="auto" # Automatically distribute model across available GPUs/CPU
|
50 |
)
|
51 |
print("Model loaded.")
|
52 |
|
|
|
53 |
text_generator_pipeline = pipeline(
|
54 |
"text-generation",
|
55 |
model=model,
|
56 |
tokenizer=tokenizer,
|
57 |
+
# device_map="auto" handles device placement, so no need for device=0 here
|
58 |
)
|
59 |
print("Text generation pipeline created successfully.")
|
60 |
model_load_error = None
|
|
|
73 |
if model_load_error:
|
74 |
return f"Model not loaded. Error: {model_load_error}"
|
75 |
else:
|
76 |
+
return "Model is not loaded or still loading. Please check Space logs for errors (especially OOM) and ensure HF_TOKEN is set and you've accepted model terms. If on CPU, it may take a very long time or fail due to memory."
|
77 |
|
78 |
content_to_analyze = ""
|
79 |
if file_upload is not None:
|
80 |
try:
|
|
|
81 |
with open(file_upload.name, 'r', encoding='utf-8') as f:
|
82 |
content_to_analyze = f.read()
|
83 |
+
if not content_to_analyze.strip() and not text_input.strip():
|
84 |
return "Uploaded file is empty and no direct text input provided. Please provide some text."
|
85 |
+
elif not content_to_analyze.strip() and text_input.strip():
|
86 |
content_to_analyze = text_input
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
return f"Error reading uploaded file: {str(e)}"
|
89 |
elif text_input:
|
|
|
94 |
if not content_to_analyze.strip():
|
95 |
return "Input text is empty."
|
96 |
|
97 |
+
# Using Llama 2 Chat Format
|
98 |
+
# <s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{user_prompt} [/INST]
|
99 |
+
# For text analysis, the "instruction" is the user_prompt, and the "text_input" is part of it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
system_prompt = "You are a helpful AI assistant specialized in text analysis. Perform the requested task on the provided text."
|
102 |
+
user_message = f"{custom_instruction}\n\nHere is the text:\n```\n{content_to_analyze}\n```"
|
103 |
|
104 |
+
messages = [
|
105 |
+
{"role": "system", "content": system_prompt},
|
106 |
+
{"role": "user", "content": user_message}
|
107 |
+
]
|
108 |
|
109 |
+
try:
|
110 |
+
# Use tokenizer.apply_chat_template if available (transformers >= 4.34.0)
|
111 |
+
prompt = text_generator_pipeline.tokenizer.apply_chat_template(
|
112 |
+
messages,
|
113 |
+
tokenize=False,
|
114 |
+
add_generation_prompt=True
|
115 |
+
)
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Warning: Could not use apply_chat_template ({e}). Falling back to manual formatting.")
|
118 |
+
# Manual Llama 2 chat format
|
119 |
+
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{user_message} [/INST]"
|
120 |
|
121 |
|
122 |
print(f"\n--- Sending to Model ---")
|
123 |
+
print(f"Full Prompt:\n{prompt}")
|
124 |
print(f"Max New Tokens: {max_new_tokens}, Temperature: {temperature}, Top P: {top_p}")
|
125 |
print("------------------------\n")
|
126 |
|
127 |
try:
|
|
|
|
|
128 |
generated_outputs = text_generator_pipeline(
|
129 |
prompt,
|
130 |
max_new_tokens=int(max_new_tokens),
|
131 |
do_sample=True,
|
132 |
+
temperature=float(temperature) if float(temperature) > 0.01 else 0.01, # Temperature 0 can be problematic
|
133 |
top_p=float(top_p),
|
134 |
+
num_return_sequences=1,
|
135 |
+
eos_token_id=text_generator_pipeline.tokenizer.eos_token_id,
|
136 |
+
pad_token_id=text_generator_pipeline.tokenizer.pad_token_id # Use the set pad_token
|
137 |
)
|
138 |
+
response_full = generated_outputs[0]['generated_text']
|
139 |
|
140 |
+
# Extract only the assistant's response part
|
141 |
+
# The model's actual answer starts after the [/INST] token.
|
142 |
+
answer_marker = "[/INST]"
|
143 |
+
if answer_marker in response_full:
|
144 |
+
response_text = response_full.split(answer_marker, 1)[1].strip()
|
145 |
else:
|
146 |
+
# Fallback if the full prompt wasn't returned, might happen with some pipeline configs
|
147 |
+
# or if the model didn't fully adhere to the template in its output.
|
148 |
+
# This is less ideal, but better than nothing.
|
149 |
+
response_text = response_full.replace(prompt, "").strip() # Try to remove the input prompt
|
150 |
+
|
151 |
+
return response_text
|
152 |
|
153 |
except Exception as e:
|
154 |
return f"Error during text generation: {str(e)}"
|
|
|
160 |
Test the capabilities of the `{MODEL_ID}` model for text analysis tasks on Italian or English texts.
|
161 |
Provide an instruction and your text (directly or via upload).
|
162 |
**Important:** Model loading can take a few minutes, especially on the first run or on CPU.
|
163 |
+
This app is best run on a Hugging Face Space with GPU resources (e.g., T4-small or A10G-small) for this 7B model.
|
164 |
""")
|
165 |
|
166 |
with gr.Row():
|
167 |
+
status_textbox = gr.Textbox(label="Model Status", value="Initializing...", interactive=False, scale=3)
|
168 |
+
current_hardware = os.getenv("SPACE_HARDWARE", "Unknown (likely local or unspecified)")
|
169 |
+
gr.Markdown(f"Running on: **{current_hardware}**")
|
170 |
+
|
171 |
|
172 |
with gr.Tab("Text Input & Analysis"):
|
173 |
with gr.Row():
|
174 |
with gr.Column(scale=2):
|
175 |
instruction_prompt = gr.Textbox(
|
176 |
+
label="Instruction for the Model (Cosa vuoi fare con il testo?)",
|
177 |
value="Riassumi questo testo in 3 frasi concise.",
|
178 |
+
lines=3,
|
179 |
+
placeholder="Example: Riassumi questo testo. / Summarize this text. / Estrai le entità nominate. / Identify named entities."
|
180 |
)
|
181 |
+
text_area_input = gr.Textbox(label="Enter Text Directly / Inserisci il testo direttamente", lines=10, placeholder="Paste your text here or upload a file below...")
|
182 |
+
file_input = gr.File(label="Or Upload a Document (.txt) / O carica un documento (.txt)", file_types=['.txt'])
|
183 |
with gr.Column(scale=3):
|
184 |
+
output_text = gr.Textbox(label="Model Output / Risultato del Modello", lines=20, interactive=False)
|
185 |
|
186 |
with gr.Accordion("Advanced Generation Parameters", open=False):
|
187 |
+
max_new_tokens_slider = gr.Slider(minimum=10, maximum=2048, value=256, step=10, label="Max New Tokens")
|
188 |
+
temperature_slider = gr.Slider(minimum=0.01, maximum=2.0, value=0.7, step=0.01, label="Temperature (higher is more creative, 0.01 for more deterministic)")
|
189 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P (nucleus sampling)")
|
190 |
|
191 |
+
analyze_button = gr.Button("🧠 Analyze Text / Analizza Testo", variant="primary")
|
192 |
|
193 |
analyze_button.click(
|
194 |
fn=analyze_text,
|
|
|
199 |
# Load the model when the app starts.
|
200 |
# This will update the status_textbox after attempting to load.
|
201 |
def startup_load_model():
|
202 |
+
print("Gradio app starting, attempting to load model...")
|
203 |
if load_model_and_pipeline():
|
204 |
return "Model loaded successfully and ready."
|
205 |
else:
|
206 |
+
return f"Failed to load model. Error: {model_load_error or 'Unknown error during startup. Check Space logs.'}"
|
207 |
|
208 |
demo.load(startup_load_model, outputs=status_textbox)
|
209 |
|
|
|
211 |
if __name__ == "__main__":
|
212 |
# For local testing (ensure HF_TOKEN is set as an environment variable or you're logged in via CLI)
|
213 |
# You would run: HF_TOKEN="your_hf_token_here" python app.py
|
|
|
214 |
if not HF_TOKEN and "HF_TOKEN" not in os.environ:
|
215 |
print("WARNING: HF_TOKEN environment variable not set.")
|
216 |
print("For local execution, either set HF_TOKEN or ensure you are logged in via 'huggingface-cli login'.")
|
|
|
217 |
try:
|
218 |
+
from huggingface_hub import HfApi
|
219 |
+
hf_api = HfApi()
|
220 |
+
token = hf_api.token
|
221 |
+
if token:
|
222 |
+
os.environ['HF_TOKEN'] = token # Set it for the current process
|
223 |
+
HF_TOKEN = token # also update the global variable used by the script
|
224 |
print("Using token from huggingface-cli login.")
|
225 |
else:
|
226 |
print("Could not retrieve token from CLI login. Model access might fail.")
|
227 |
except Exception as e:
|
228 |
print(f"Could not check CLI login status: {e}. Model access might fail.")
|
229 |
|
230 |
+
print("Launching Gradio interface...")
|
231 |
demo.queue().launch(debug=True, share=False) # share=True for public link if local
|