Update app.py
Browse files
app.py
CHANGED
@@ -7,12 +7,12 @@ import io
|
|
7 |
import os
|
8 |
from typing import Tuple
|
9 |
|
10 |
-
# Load
|
11 |
-
HF_API_KEY = os.getenv("HF_API_KEY") or "your_hf_token_here"
|
12 |
if not HF_API_KEY:
|
13 |
raise ValueError("HF_API_KEY is not set.")
|
14 |
|
15 |
-
# Hugging Face
|
16 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
17 |
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
18 |
|
@@ -20,51 +20,54 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
20 |
|
21 |
# Translation model (Tamil to English)
|
22 |
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
23 |
-
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
24 |
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
|
|
25 |
|
26 |
# Text generation model
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
|
|
32 |
def translate_tamil_to_english(text: str) -> str:
|
33 |
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
34 |
-
|
35 |
-
return translator_tokenizer.decode(
|
36 |
|
|
|
37 |
def generate_text(prompt: str) -> str:
|
38 |
-
inputs =
|
39 |
-
|
40 |
-
return
|
41 |
|
|
|
42 |
def generate_image(prompt: str) -> Image.Image:
|
43 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
print("Image generation failed:", e)
|
49 |
-
return Image.new("RGB", (300, 300), color="gray")
|
50 |
|
|
|
51 |
def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]:
|
52 |
-
|
53 |
-
|
54 |
-
image = generate_image(
|
55 |
-
return
|
56 |
|
57 |
-
# Gradio
|
58 |
with gr.Blocks() as demo:
|
59 |
-
gr.Markdown("## Tamil to English
|
60 |
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
-
english_output = gr.Textbox(label="Translated English")
|
65 |
-
creative_output = gr.Textbox(label="
|
66 |
-
image_output = gr.Image(label="Generated Image")
|
67 |
|
68 |
-
|
69 |
|
70 |
demo.launch()
|
|
|
7 |
import os
|
8 |
from typing import Tuple
|
9 |
|
10 |
+
# Load Hugging Face token
|
11 |
+
HF_API_KEY = os.getenv("HF_API_KEY") or "your_hf_token_here"
|
12 |
if not HF_API_KEY:
|
13 |
raise ValueError("HF_API_KEY is not set.")
|
14 |
|
15 |
+
# Hugging Face inference API endpoint
|
16 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
17 |
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
18 |
|
|
|
20 |
|
21 |
# Translation model (Tamil to English)
|
22 |
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
|
|
23 |
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
24 |
+
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
25 |
|
26 |
# Text generation model
|
27 |
+
text_model = "EleutherAI/gpt-neo-1.3B"
|
28 |
+
text_tokenizer = AutoTokenizer.from_pretrained(text_model)
|
29 |
+
text_generator = AutoModelForCausalLM.from_pretrained(text_model).to(device)
|
30 |
+
text_tokenizer.pad_token = text_tokenizer.eos_token
|
31 |
|
32 |
+
# Step 1: Tamil to English translation
|
33 |
def translate_tamil_to_english(text: str) -> str:
|
34 |
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
35 |
+
outputs = translator.generate(**inputs)
|
36 |
+
return translator_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
|
38 |
+
# Step 2: Generate creative text
|
39 |
def generate_text(prompt: str) -> str:
|
40 |
+
inputs = text_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
41 |
+
outputs = text_generator.generate(**inputs, max_length=100, num_return_sequences=1)
|
42 |
+
return text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
|
44 |
+
# Step 3: Generate image
|
45 |
def generate_image(prompt: str) -> Image.Image:
|
46 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
47 |
+
if response.status_code == 200 and response.headers.get("content-type", "").startswith("image"):
|
48 |
+
return Image.open(io.BytesIO(response.content))
|
49 |
+
else:
|
50 |
+
return Image.new("RGB", (512, 512), color="gray")
|
|
|
|
|
51 |
|
52 |
+
# Master function
|
53 |
def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]:
|
54 |
+
english = translate_tamil_to_english(tamil_text)
|
55 |
+
creative = generate_text(english)
|
56 |
+
image = generate_image(english)
|
57 |
+
return english, creative, image
|
58 |
|
59 |
+
# Gradio UI using Blocks API
|
60 |
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("## 🌍 Tamil to English | Text & Image Generator")
|
62 |
|
63 |
+
with gr.Row():
|
64 |
+
tamil_input = gr.Textbox(label="📝 Enter Tamil Text", placeholder="உங்கள் உரையை இங்கே உள்ளிடவும்...", lines=2)
|
65 |
+
generate_btn = gr.Button("Translate & Generate")
|
66 |
|
67 |
+
english_output = gr.Textbox(label="🇬🇧 Translated English")
|
68 |
+
creative_output = gr.Textbox(label="✨ Generated Text")
|
69 |
+
image_output = gr.Image(label="🖼️ Generated Image", type="pil")
|
70 |
|
71 |
+
generate_btn.click(fn=process_input, inputs=tamil_input, outputs=[english_output, creative_output, image_output])
|
72 |
|
73 |
demo.launch()
|