Update app.py
Browse files
app.py
CHANGED
@@ -7,72 +7,64 @@ import io
|
|
7 |
import os
|
8 |
from typing import Tuple
|
9 |
|
10 |
-
# Load
|
11 |
-
HF_API_KEY = os.getenv("HF_API_KEY") #
|
12 |
if not HF_API_KEY:
|
13 |
-
raise ValueError("HF_API_KEY is not set.
|
14 |
|
15 |
-
#
|
16 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
17 |
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
18 |
|
19 |
-
# Check if GPU is available
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
-
#
|
23 |
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
24 |
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
25 |
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
26 |
|
27 |
-
#
|
28 |
generator_model = "EleutherAI/gpt-neo-1.3B"
|
29 |
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
|
30 |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
|
31 |
-
|
32 |
-
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
33 |
|
34 |
def translate_tamil_to_english(text: str) -> str:
|
35 |
-
"""Translates Tamil text to English."""
|
36 |
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
37 |
output = translator.generate(**inputs)
|
38 |
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
39 |
|
40 |
def generate_text(prompt: str) -> str:
|
41 |
-
"""Generates a creative text based on English input."""
|
42 |
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
43 |
-
output = generator.generate(**inputs, max_length=100)
|
44 |
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
|
46 |
def generate_image(prompt: str) -> Image.Image:
|
47 |
-
"""Sends request to API for image generation."""
|
48 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
49 |
try:
|
50 |
if response.status_code == 200 and response.headers["content-type"].startswith("image"):
|
51 |
return Image.open(io.BytesIO(response.content))
|
52 |
except Exception as e:
|
53 |
-
print("Image generation
|
54 |
-
return Image.new("RGB", (300, 300), "
|
55 |
|
56 |
def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]:
|
57 |
-
"""Complete pipeline: Translation, Text Generation, and Image Generation."""
|
58 |
english_text = translate_tamil_to_english(tamil_text)
|
59 |
creative_text = generate_text(english_text)
|
60 |
image = generate_image(english_text)
|
61 |
return english_text, creative_text, image
|
62 |
|
63 |
-
# Gradio
|
64 |
-
|
65 |
-
|
66 |
-
inputs=gr.Textbox(label="Enter Tamil Text"),
|
67 |
-
outputs=[
|
68 |
-
gr.Textbox(label="Translated English Text"),
|
69 |
-
gr.Textbox(label="Creative Text"),
|
70 |
-
gr.Image(label="Generated Image")
|
71 |
-
],
|
72 |
-
title="Tamil to English Translator & Image Generator",
|
73 |
-
description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text.",
|
74 |
-
allow_flagging="never" # Avoids schema-related error in Spaces
|
75 |
-
)
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import os
|
8 |
from typing import Tuple
|
9 |
|
10 |
+
# Load HF token
|
11 |
+
HF_API_KEY = os.getenv("HF_API_KEY") or "your_hf_token_here" # Replace this with your token if local
|
12 |
if not HF_API_KEY:
|
13 |
+
raise ValueError("HF_API_KEY is not set.")
|
14 |
|
15 |
+
# Hugging Face image model
|
16 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
17 |
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
18 |
|
|
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
+
# Translation model (Tamil to English)
|
22 |
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
23 |
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
24 |
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
25 |
|
26 |
+
# Text generation model
|
27 |
generator_model = "EleutherAI/gpt-neo-1.3B"
|
28 |
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
|
29 |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
|
30 |
+
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
|
|
31 |
|
32 |
def translate_tamil_to_english(text: str) -> str:
|
|
|
33 |
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
34 |
output = translator.generate(**inputs)
|
35 |
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
36 |
|
37 |
def generate_text(prompt: str) -> str:
|
|
|
38 |
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
39 |
+
output = generator.generate(**inputs, max_length=100, num_return_sequences=1)
|
40 |
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
41 |
|
42 |
def generate_image(prompt: str) -> Image.Image:
|
|
|
43 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
44 |
try:
|
45 |
if response.status_code == 200 and response.headers["content-type"].startswith("image"):
|
46 |
return Image.open(io.BytesIO(response.content))
|
47 |
except Exception as e:
|
48 |
+
print("Image generation failed:", e)
|
49 |
+
return Image.new("RGB", (300, 300), color="gray")
|
50 |
|
51 |
def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]:
|
|
|
52 |
english_text = translate_tamil_to_english(tamil_text)
|
53 |
creative_text = generate_text(english_text)
|
54 |
image = generate_image(english_text)
|
55 |
return english_text, creative_text, image
|
56 |
|
57 |
+
# Gradio app
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("## Tamil to English Translator with Text and Image Generator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
tamil_input = gr.Textbox(label="Enter Tamil Text")
|
62 |
+
translate_btn = gr.Button("Translate & Generate")
|
63 |
+
|
64 |
+
english_output = gr.Textbox(label="Translated English")
|
65 |
+
creative_output = gr.Textbox(label="Creative Text")
|
66 |
+
image_output = gr.Image(label="Generated Image")
|
67 |
+
|
68 |
+
translate_btn.click(fn=process_input, inputs=tamil_input, outputs=[english_output, creative_output, image_output])
|
69 |
+
|
70 |
+
demo.launch()
|