24Sureshkumar's picture
Update app.py
831a7b4 verified
raw
history blame
5.81 kB
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import tempfile
import os
import time
from transformers import CLIPProcessor, CLIPModel
import torch.nn.functional as F
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load translation model
translator_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
).to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
translator_tokenizer.src_lang = "ta_IN"
# Load GPT-2 for creative text
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_model.eval()
# Load Stable Diffusion 1.5
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-1-5",
torch_dtype=torch.float32,
).to(device)
pipe.safety_checker = None # Optional: disable safety filter
# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# --- Translation ---
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# --- GPT-2 Creative Generation ---
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
# Perplexity
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
# --- Stable Diffusion Image Generation ---
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
duration = round(time.time() - start, 2)
return tmp_file.name, duration, image
except Exception as e:
return None, 0, f"Image generation failed: {str(e)}"
# --- CLIP Similarity ---
def evaluate_clip_similarity(text, image):
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
outputs = clip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = F.softmax(logits_per_image, dim=1)
similarity_score = logits_per_image[0][0].item()
return round(similarity_score, 4)
# --- Streamlit UI ---
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")
tamil_input = st.text_area("✍️ Enter Tamil text", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")
if st.button("πŸš€ Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("πŸ”„ Translating..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"βœ… Translated in {t_time}s")
st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"πŸ“Š ROUGE-L Score: `{rouge_l}`")
with st.spinner("🎨 Generating image..."):
image_path, img_time, image_obj = generate_image(english_text)
if isinstance(image_obj, Image.Image):
st.success(f"πŸ–ΌοΈ Image generated in {img_time}s")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
with st.spinner("πŸ”Ž Evaluating CLIP similarity..."):
clip_score = evaluate_clip_similarity(english_text, image_obj)
st.markdown(f"πŸ” CLIP Text-Image Similarity: `{clip_score}`")
else:
st.error(image_obj)
with st.spinner("πŸ’‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
st.success(f"✨ Creative text generated in {c_time}s")
st.markdown(f"**🧠 Creative Output:** `{creative}`")
st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`, πŸ“‰ Perplexity: `{ppl}`")
st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2, Stable Diffusion 1.5, and CLIP (Open Source)")