File size: 5,823 Bytes
ab52a13 cbc840b b88f708 9c3ea11 ab52a13 831a7b4 b88f708 ab52a13 396e877 ab52a13 b88f708 ab52a13 cbc840b 831a7b4 396e877 b88f708 ab52a13 9c3ea11 831a7b4 ab52a13 831a7b4 b88f708 ab52a13 cbc840b 396e877 ab52a13 cbc840b b88f708 cbc840b b88f708 cbc840b 396e877 831a7b4 cbc840b ab52a13 cbc840b f67d206 396e877 f67d206 f837ee9 f67d206 831a7b4 b88f708 cbc840b 831a7b4 cbc840b 831a7b4 f837ee9 831a7b4 cbc840b 831a7b4 b88f708 ab52a13 cbc840b 831a7b4 b88f708 ab52a13 c3b581c b88f708 cbc840b b88f708 9c3ea11 cbc840b ab52a13 cbc840b ab52a13 cbc840b ab52a13 831a7b4 cbc840b 831a7b4 ab52a13 cbc840b 831a7b4 9c3ea11 cbc840b 831a7b4 b88f708 cbc840b f837ee9 b88f708 ab52a13 c3b581c f837ee9 b88f708 ab52a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
%%writefile app.py
import streamlit as st
import torch
import os
import time
import tempfile
from PIL import Image
import torch.nn.functional as F
from transformers import (
MBartForConditionalGeneration,
MBart50TokenizerFast,
AutoTokenizer,
AutoModelForCausalLM,
CLIPProcessor,
CLIPModel,
)
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load MBart tokenizer and model
translator_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
).to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
translator_tokenizer.src_lang = "ta_IN"
# Load GPT-2
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_model.eval()
# Load Stable Diffusion
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
token=os.getenv("HF_TOKEN"),
torch_dtype=torch.float32,
).to(device)
pipe.safety_checker = None
# Load CLIP
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# ---------------- Functions ---------------- #
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
duration = round(time.time() - start, 2)
return tmp_file.name, duration, image
except Exception as e:
return None, 0, f"Image generation failed: {str(e)}"
def evaluate_clip_similarity(text, image):
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
outputs = clip_model(**inputs)
logits_per_image = outputs.logits_per_image
similarity_score = logits_per_image[0][0].item()
return round(similarity_score, 4)
# ---------------- Streamlit UI ---------------- #
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
tamil_input = st.text_area("βοΈ Enter Tamil text here", height=150)
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
if st.button("π Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("π Translating Tamil to English..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"β
Translated in {t_time} seconds")
st.markdown(f"**π English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"π **ROUGE-L Score:** `{rouge_l}`")
else:
st.info("βΉοΈ ROUGE-L not calculated. Reference not provided.")
with st.spinner("π¨ Generating image..."):
image_path, img_time, image_obj = generate_image(english_text)
if isinstance(image_obj, Image.Image):
st.success(f"πΌοΈ Image generated in {img_time} seconds")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
with st.spinner("π Evaluating CLIP similarity..."):
clip_score = evaluate_clip_similarity(english_text, image_obj)
st.markdown(f"π **CLIP Text-Image Similarity:** `{clip_score}`")
else:
st.error(image_obj)
with st.spinner("π‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
st.success(f"β¨ Creative text generated in {c_time} seconds")
st.markdown(f"**π§ Creative Output:** `{creative}`")
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2, Stable Diffusion 2.1, and CLIP on Hugging Face π€")
|