File size: 2,019 Bytes
1437058
67241c5
d550533
eea6ac5
d16c1e4
9fd10ba
d7164de
4569162
67241c5
 
 
9bdb949
67241c5
d7164de
4569162
 
 
 
 
5ca4bcd
67241c5
9607ff2
c1732d5
67241c5
 
4569162
67241c5
4569162
 
67241c5
4569162
 
 
67241c5
 
 
 
 
 
 
 
 
4569162
 
 
 
67241c5
9607ff2
 
d16c1e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from diffusers import StableDiffusionPipeline
import torch

@st.cache_resource
def load_all_models():
    # Load translation model
    model_id = "ai4bharat/indictrans2-indic-en-dist-200M"
    tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_id, trust_remote_code=True)

    # Load Stable Diffusion image generator
    img_pipe = StableDiffusionPipeline.from_pretrained(
        "stabilityai/stable-diffusion-2-1",
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        revision="fp16" if torch.cuda.is_available() else None,
    )
    img_pipe = img_pipe.to("cuda" if torch.cuda.is_available() else "cpu")

    return tokenizer, model, img_pipe

def main():
    st.set_page_config(page_title="Tamil to English to Image", layout="centered")
    st.title("📸 Tamil ➝ English ➝ AI Image Generator")

    tamil_text = st.text_area("Enter Tamil text:", height=150)

    if st.button("Generate Image"):
        if not tamil_text.strip():
            st.warning("Please enter some Tamil text.")
            return

        with st.spinner("Loading models..."):
            tokenizer, model, img_pipe = load_all_models()

        with st.spinner("Translating Tamil to English..."):
            # Prepare special format: "<2en> <tamil sentence>"
            formatted_input = f"<2en> {tamil_text.strip()}"
            inputs = tokenizer(formatted_input, return_tensors="pt")
            output_ids = model.generate(**inputs)
            translated = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
            st.success(f"🔤 English Translation: `{translated}`")

        with st.spinner("Generating image..."):
            image = img_pipe(prompt=translated).images[0]
            st.image(image, caption="🖼️ AI-generated Image", use_column_width=True)

if __name__ == "__main__":
    main()