Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from diffusers import StableDiffusionPipeline
|
4 |
import torch
|
5 |
|
6 |
-
# Load models only once
|
7 |
@st.cache_resource
|
8 |
def load_all_models():
|
9 |
# Load translation model
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
12 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
13 |
-
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
14 |
|
15 |
-
# Load
|
16 |
img_pipe = StableDiffusionPipeline.from_pretrained(
|
17 |
"stabilityai/stable-diffusion-2-1",
|
18 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
@@ -20,35 +18,33 @@ def load_all_models():
|
|
20 |
)
|
21 |
img_pipe = img_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
-
return tokenizer, model,
|
24 |
|
25 |
-
# Streamlit UI
|
26 |
def main():
|
27 |
-
st.set_page_config(page_title="Tamil to English to Image
|
28 |
-
st.title("📸 Tamil
|
29 |
-
st.markdown("Translate Tamil text to English and generate an image from it!")
|
30 |
|
31 |
-
|
32 |
-
with st.spinner("Loading models..."):
|
33 |
-
tokenizer, model, translation_pipeline, img_pipe = load_all_models()
|
34 |
|
35 |
-
# Input
|
36 |
-
tamil_text = st.text_area("Enter Tamil text here:", height=150)
|
37 |
-
|
38 |
if st.button("Generate Image"):
|
39 |
-
if tamil_text.strip()
|
40 |
st.warning("Please enter some Tamil text.")
|
41 |
return
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
st.success(f"🔤 English Translation: `{translated}`")
|
47 |
|
48 |
-
# Step 2: Generate image
|
49 |
with st.spinner("Generating image..."):
|
50 |
image = img_pipe(prompt=translated).images[0]
|
51 |
-
st.image(image, caption="
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from diffusers import StableDiffusionPipeline
|
4 |
import torch
|
5 |
|
|
|
6 |
@st.cache_resource
|
7 |
def load_all_models():
|
8 |
# Load translation model
|
9 |
+
model_id = "ai4bharat/indictrans2-indic-en-dist-200M"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, trust_remote_code=True)
|
|
|
12 |
|
13 |
+
# Load Stable Diffusion image generator
|
14 |
img_pipe = StableDiffusionPipeline.from_pretrained(
|
15 |
"stabilityai/stable-diffusion-2-1",
|
16 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
18 |
)
|
19 |
img_pipe = img_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
+
return tokenizer, model, img_pipe
|
22 |
|
|
|
23 |
def main():
|
24 |
+
st.set_page_config(page_title="Tamil to English to Image", layout="centered")
|
25 |
+
st.title("📸 Tamil ➝ English ➝ AI Image Generator")
|
|
|
26 |
|
27 |
+
tamil_text = st.text_area("Enter Tamil text:", height=150)
|
|
|
|
|
28 |
|
|
|
|
|
|
|
29 |
if st.button("Generate Image"):
|
30 |
+
if not tamil_text.strip():
|
31 |
st.warning("Please enter some Tamil text.")
|
32 |
return
|
33 |
|
34 |
+
with st.spinner("Loading models..."):
|
35 |
+
tokenizer, model, img_pipe = load_all_models()
|
36 |
+
|
37 |
+
with st.spinner("Translating Tamil to English..."):
|
38 |
+
# Prepare special format: "<2en> <tamil sentence>"
|
39 |
+
formatted_input = f"<2en> {tamil_text.strip()}"
|
40 |
+
inputs = tokenizer(formatted_input, return_tensors="pt")
|
41 |
+
output_ids = model.generate(**inputs)
|
42 |
+
translated = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
43 |
st.success(f"🔤 English Translation: `{translated}`")
|
44 |
|
|
|
45 |
with st.spinner("Generating image..."):
|
46 |
image = img_pipe(prompt=translated).images[0]
|
47 |
+
st.image(image, caption="🖼️ AI-generated Image", use_column_width=True)
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
main()
|