File size: 5,513 Bytes
cbc840b
b88f708
9c3ea11
 
 
 
 
831a7b4
9c3ea11
831a7b4
 
b88f708
9c3ea11
396e877
 
9c3ea11
 
 
b88f708
 
cbc840b
831a7b4
396e877
b88f708
9c3ea11
 
831a7b4
 
 
b88f708
9c3ea11
cbc840b
 
396e877
9c3ea11
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
b88f708
cbc840b
396e877
831a7b4
cbc840b
 
 
 
9c3ea11
cbc840b
f67d206
396e877
f67d206
 
f837ee9
f67d206
831a7b4
b88f708
 
cbc840b
 
831a7b4
 
cbc840b
831a7b4
f837ee9
831a7b4
cbc840b
831a7b4
 
 
 
 
 
 
 
 
 
b88f708
831a7b4
cbc840b
831a7b4
b88f708
f837ee9
c3b581c
b88f708
cbc840b
b88f708
 
 
9c3ea11
cbc840b
 
f837ee9
cbc840b
 
f837ee9
cbc840b
9c3ea11
831a7b4
cbc840b
831a7b4
 
cbc840b
831a7b4
 
 
9c3ea11
cbc840b
831a7b4
b88f708
cbc840b
f837ee9
b88f708
9c3ea11
c3b581c
f837ee9
b88f708
 
9c3ea11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import streamlit as st
import torch
import torch.nn.functional as F
import os
import time
import tempfile
from PIL import Image
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPProcessor, CLIPModel
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer

# --- Device Setup ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- Load Models ---
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"

gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_model.eval()

pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-1-5").to(device)
pipe.safety_checker = None

clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# --- Functions ---
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt").to(device)
    outputs = translator_model.generate(**inputs, forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"])
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
    output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0

    with torch.no_grad():
        input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
        outputs = gen_model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss).item()

    return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)

def generate_image(prompt):
    try:
        start = time.time()
        result = pipe(prompt)
        image = result.images[0].resize((256, 256))
        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image.save(tmp_file.name)
        duration = round(time.time() - start, 2)
        return tmp_file.name, duration, image
    except Exception as e:
        return None, 0, f"Image generation failed: {str(e)}"

def evaluate_clip_similarity(text, image):
    inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
    with torch.no_grad():
        outputs = clip_model(**inputs)
        logits_per_image = outputs.logits_per_image
        probs = F.softmax(logits_per_image, dim=1)
        similarity_score = logits_per_image[0][0].item()
    return round(similarity_score, 4)

# --- Streamlit UI ---
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating Tamil to English..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time}s")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š ROUGE-L Score: `{rouge_l}`")

        with st.spinner("πŸ–ΌοΈ Generating image from text..."):
            image_path, img_time, image_obj = generate_image(english_text)

        if isinstance(image_obj, Image.Image):
            st.success(f"πŸ–ΌοΈ Image generated in {img_time}s")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)

            with st.spinner("πŸ”Ž Evaluating CLIP similarity..."):
                clip_score = evaluate_clip_similarity(english_text, image_obj)
                st.markdown(f"πŸ” **CLIP Text-Image Similarity:** `{clip_score}`")
        else:
            st.error(image_obj)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)

        st.success(f"✨ Creative text in {c_time}s")
        st.markdown(f"**🧠 Creative Output:** `{creative}`")
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`, πŸ“‰ Perplexity: `{ppl}`")

st.markdown("---")
st.caption("Built by Sureshkumar R | MBart + GPT-2 + Stable Diffusion + CLIP")