File size: 5,513 Bytes
cbc840b b88f708 9c3ea11 831a7b4 9c3ea11 831a7b4 b88f708 9c3ea11 396e877 9c3ea11 b88f708 cbc840b 831a7b4 396e877 b88f708 9c3ea11 831a7b4 b88f708 9c3ea11 cbc840b 396e877 9c3ea11 cbc840b b88f708 cbc840b b88f708 cbc840b 396e877 831a7b4 cbc840b 9c3ea11 cbc840b f67d206 396e877 f67d206 f837ee9 f67d206 831a7b4 b88f708 cbc840b 831a7b4 cbc840b 831a7b4 f837ee9 831a7b4 cbc840b 831a7b4 b88f708 831a7b4 cbc840b 831a7b4 b88f708 f837ee9 c3b581c b88f708 cbc840b b88f708 9c3ea11 cbc840b f837ee9 cbc840b f837ee9 cbc840b 9c3ea11 831a7b4 cbc840b 831a7b4 cbc840b 831a7b4 9c3ea11 cbc840b 831a7b4 b88f708 cbc840b f837ee9 b88f708 9c3ea11 c3b581c f837ee9 b88f708 9c3ea11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import streamlit as st
import torch
import torch.nn.functional as F
import os
import time
import tempfile
from PIL import Image
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPProcessor, CLIPModel
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
# --- Device Setup ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Load Models ---
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_model.eval()
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-1-5").to(device)
pipe.safety_checker = None
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# --- Functions ---
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(**inputs, forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"])
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
duration = round(time.time() - start, 2)
return tmp_file.name, duration, image
except Exception as e:
return None, 0, f"Image generation failed: {str(e)}"
def evaluate_clip_similarity(text, image):
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
outputs = clip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = F.softmax(logits_per_image, dim=1)
similarity_score = logits_per_image[0][0].item()
return round(similarity_score, 4)
# --- Streamlit UI ---
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
tamil_input = st.text_area("βοΈ Enter Tamil text", height=150)
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
if st.button("π Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("π Translating Tamil to English..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"β
Translated in {t_time}s")
st.markdown(f"**π English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
with st.spinner("πΌοΈ Generating image from text..."):
image_path, img_time, image_obj = generate_image(english_text)
if isinstance(image_obj, Image.Image):
st.success(f"πΌοΈ Image generated in {img_time}s")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
with st.spinner("π Evaluating CLIP similarity..."):
clip_score = evaluate_clip_similarity(english_text, image_obj)
st.markdown(f"π **CLIP Text-Image Similarity:** `{clip_score}`")
else:
st.error(image_obj)
with st.spinner("π‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
st.success(f"β¨ Creative text in {c_time}s")
st.markdown(f"**π§ Creative Output:** `{creative}`")
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
st.markdown("---")
st.caption("Built by Sureshkumar R | MBart + GPT-2 + Stable Diffusion + CLIP")
|