|
# `quickmt-zh-en` Neural Machine Translation Model |
|
|
|
# Usage |
|
|
|
## Install `quickmt` |
|
|
|
```bash |
|
git clone https://github.com/quickmt/quickmt.git |
|
pip install ./quickmt/ |
|
``` |
|
|
|
## Download model |
|
|
|
```bash |
|
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en |
|
``` |
|
|
|
## Use model |
|
|
|
```python |
|
from quickmt import Translator |
|
|
|
# Auto-detects GPU, set to "cpu" to force CPU inference |
|
t = Translator("./quickmt-zh-en/", device="auto") |
|
|
|
# Translate - set beam size to 5 for higher quality (but slower speed) |
|
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], beam_size=1) |
|
|
|
# Get alternative translations by sampling |
|
# You can pass any cTranslate2 `translate_batch` arguments |
|
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9) |
|
``` |
|
|
|
# Model Information |
|
|
|
* Trained using [`eole`](https://github.com/eole-nlp/eole) |
|
* Exported for fast inference to []CTranslate2](https://github.com/OpenNMT/CTranslate2) format |
|
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main |
|
|
|
## Metrics |
|
|
|
BLEU and CHRF2 calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the Flores200 `devtest` test set ("zho_Hans"->"eng_Latn"). |
|
|
|
| Model | bleu | chrf2 | |
|
| ---- | ---- | ---- | |
|
| quickmt/quickmt-zh-en | 28.58 | 57.46 | |
|
| Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | |
|
| facebook/m2m100_418M | 18.96 | 50.06 | |
|
| facebook/m2m100_1.2B | 24.68 | 54.68 | |
|
| facebook/nllb-200-distilled-600M | 26.22 | 55.17 | |
|
| facebook/nllb-200-distilled-1.3B | 28.54 | 57.34 | |
|
| google/madlad400-3b-mt | 28.74 | 58.01 | |
|
|
|
## Training Configuration |
|
|
|
```yaml |
|
## IO |
|
save_data: zh_en/data_spm |
|
overwrite: True |
|
seed: 1234 |
|
report_every: 100 |
|
valid_metrics: ["BLEU"] |
|
tensorboard: true |
|
tensorboard_log_dir: tensorboard |
|
|
|
### Vocab |
|
src_vocab: zh-en/src.eole.vocab |
|
tgt_vocab: zh-en/tgt.eole.vocab |
|
src_vocab_size: 20000 |
|
tgt_vocab_size: 20000 |
|
vocab_size_multiple: 8 |
|
share_vocab: False |
|
n_sample: 0 |
|
|
|
data: |
|
corpus_1: |
|
path_src: hf://quickmt/quickmt-train-zh-en/zh |
|
path_tgt: hf://quickmt/quickmt-train-zh-en/en |
|
path_sco: hf://quickmt/quickmt-train-zh-en/sco |
|
|
|
valid: |
|
path_src: zh-en/dev.zho |
|
path_tgt: zh-en/dev.eng |
|
|
|
transforms: [sentencepiece, filtertoolong] |
|
transforms_configs: |
|
sentencepiece: |
|
src_subword_model: "zh-en/src.spm.model" |
|
tgt_subword_model: "zh-en/tgt.spm.model" |
|
filtertoolong: |
|
src_seq_length: 512 |
|
tgt_seq_length: 512 |
|
|
|
training: |
|
# Run configuration |
|
model_path: quickmt-zh-en |
|
keep_checkpoint: 4 |
|
save_checkpoint_steps: 1000 |
|
train_steps: 200000 |
|
valid_steps: 1000 |
|
|
|
# Train on a single GPU |
|
world_size: 1 |
|
gpu_ranks: [0] |
|
|
|
# Batching |
|
batch_type: "tokens" |
|
batch_size: 13312 |
|
valid_batch_size: 13312 |
|
batch_size_multiple: 8 |
|
accum_count: [4] |
|
accum_steps: [0] |
|
|
|
# Optimizer & Compute |
|
compute_dtype: "bfloat16" |
|
optim: "pagedadamw8bit" |
|
learning_rate: 1.0 |
|
warmup_steps: 10000 |
|
decay_method: "noam" |
|
adam_beta2: 0.998 |
|
|
|
# Data loading |
|
bucket_size: 262144 |
|
num_workers: 4 |
|
prefetch_factor: 100 |
|
|
|
# Hyperparams |
|
dropout_steps: [0] |
|
dropout: [0.1] |
|
attention_dropout: [0.1] |
|
max_grad_norm: 0 |
|
label_smoothing: 0.1 |
|
average_decay: 0.0001 |
|
param_init_method: xavier_uniform |
|
normalization: "tokens" |
|
|
|
model: |
|
architecture: "transformer" |
|
layer_norm: standard |
|
share_embeddings: false |
|
share_decoder_embeddings: true |
|
add_ffnbias: true |
|
mlp_activation_fn: gated-silu |
|
add_estimator: false |
|
add_qkvbias: false |
|
norm_eps: 1e-6 |
|
hidden_size: 1024 |
|
encoder: |
|
layers: 8 |
|
decoder: |
|
layers: 2 |
|
heads: 16 |
|
transformer_ff: 4096 |
|
embeddings: |
|
word_vec_size: 1024 |
|
position_encoding_type: "SinusoidalInterleaved" |
|
``` |
|
|