File size: 4,189 Bytes
36ca44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
language:
- en
- de
tags:
- translation
license: cc-by-4.0
datasets:
- quickmt/quickmt-train.de-en
model-index:
- name: quickmt-de-en
  results:
  - task:
      name: Translation deu-eng
      type: translation
      args: deu-eng
    dataset:
      name: flores101-devtest
      type: flores_101
      args: deu_Latn eng_Latn devtest
    metrics:
    - name: CHRF
      type: chrf
      value: 68.83
    - name: BLEU
      type: bleu
      value: 44.20
    - name: COMET
      type: comet
      value: 88.88
---


# `quickmt-de-en` Neural Machine Translation Model 

`quickmt-de-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `de` into `en`.


## Model Information

* Trained using [`eole`](https://github.com/eole-nlp/eole)
* 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
* 20k separate source/target Sentencepiece vocabulary
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.de-en/tree/main

See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.

## Usage with `quickmt`

You must install the Nvidia cuda toolkit first, if you want to do GPU inference.

Next, install the `quickmt` python library and download the model:

```bash
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/

quickmt-model-download quickmt/quickmt-de-en ./quickmt-de-en
```

Finally use the model in python:

```python
from quickmt import Translator

# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-de-en/", device="auto")

# Translate - set beam size to 5 for higher quality (but slower speed)
sample_text = 'Dr. Ehud Ur, Professor für Medizin an der Dalhousie University in Halifax, Nova Scotia, und Vorsitzender der Abteilung für Klinik und Wissenschaft des Kanadischen Diabetesverbands gab zu bedenken, dass die Forschungsarbeit noch in den Kinderschuhen stecke.'
t(sample_text, beam_size=5)

> 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and chair of the Department of Clinic and Science of the Canadian Diabetes Association, said the research is still in its infancy.'

# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments, e.g.
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.99)
```

The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible  to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.


## Metrics

`bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("deu_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).

|                                  |   bleu |   chrf2 |   comet22 |   Time (s) |
|:---------------------------------|-------:|--------:|----------:|-----------:|
| quickmt/quickmt-de-en            |  44.21 |   68.83 |     88.89 |       1.03 |
| Helsink-NLP/opus-mt-de-en        |  40.04 |   66.16 |     87.68 |       3.47 |
| facebook/nllb-200-distilled-600M |  42.46 |   67.07 |     88.14 |      21.36 |
| facebook/nllb-200-distilled-1.3B |  44.44 |   68.75 |     89.08 |      37.58 |
| facebook/m2m100_418M             |  34.27 |   61.86 |     84.52 |      17.89 |
| facebook/m2m100_1.2B             |  40.34 |   65.99 |     87.67 |      35.27 |

`quickmt-de-en` is the fastest and is higher quality than `opus-mt-de-en`, `m2m100_418m`, `m2m100_1.2B` and `nllb-200-distilled-600M`.