quickmt-de-en
Neural Machine Translation Model
quickmt-de-en
is a reasonably fast and reasonably accurate neural machine translation model for translation from de
into en
.
Model Information
- Trained using
eole
- 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
- 20k separate source/target Sentencepiece vocabulary
- Exported for fast inference to CTranslate2 format
- Training data: https://huggingface.co/datasets/quickmt/quickmt-train.de-en/tree/main
See the eole
model configuration in this repository for further details and the eole-model
for the raw eole
(pytorch) model.
Usage with quickmt
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
Next, install the quickmt
python library and download the model:
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/
quickmt-model-download quickmt/quickmt-de-en ./quickmt-de-en
Finally use the model in python:
from quickmt import Translator
# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-de-en/", device="auto")
# Translate - set beam size to 5 for higher quality (but slower speed)
sample_text = 'Dr. Ehud Ur, Professor für Medizin an der Dalhousie University in Halifax, Nova Scotia, und Vorsitzender der Abteilung für Klinik und Wissenschaft des Kanadischen Diabetesverbands gab zu bedenken, dass die Forschungsarbeit noch in den Kinderschuhen stecke.'
t(sample_text, beam_size=5)
> 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and chair of the Department of Clinic and Science of the Canadian Diabetes Association, said the research is still in its infancy.'
# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments, e.g.
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.99)
The model is in ctranslate2
format, and the tokenizers are sentencepiece
, so you can use ctranslate2
directly instead of through quickmt
. It is also possible to get this model to work with e.g. LibreTranslate which also uses ctranslate2
and sentencepiece
.
Metrics
bleu
and chrf2
are calculated with sacrebleu on the Flores200 devtest
test set ("deu_Latn"->"eng_Latn"). comet22
with the comet
library and the default model. "Time (s)" is the time in seconds to translate (using ctranslate2
) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
bleu | chrf2 | comet22 | Time (s) | |
---|---|---|---|---|
quickmt/quickmt-de-en | 44.21 | 68.83 | 88.89 | 1.03 |
Helsink-NLP/opus-mt-de-en | 40.04 | 66.16 | 87.68 | 3.47 |
facebook/nllb-200-distilled-600M | 42.46 | 67.07 | 88.14 | 21.36 |
facebook/nllb-200-distilled-1.3B | 44.44 | 68.75 | 89.08 | 37.58 |
facebook/m2m100_418M | 34.27 | 61.86 | 84.52 | 17.89 |
facebook/m2m100_1.2B | 40.34 | 65.99 | 87.67 | 35.27 |
quickmt-de-en
is the fastest and is higher quality than opus-mt-de-en
, m2m100_418m
, m2m100_1.2B
and nllb-200-distilled-600M
.
- Downloads last month
- 4
Dataset used to train quickmt/quickmt-de-en
Evaluation results
- CHRF on flores101-devtestself-reported68.830
- BLEU on flores101-devtestself-reported44.200
- COMET on flores101-devtestself-reported88.880