Stable-Diffusion-v1.5: Optimized for Mobile Deployment

State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions

Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

This model is an implementation of Stable-Diffusion-v1.5 found here.

This repository provides scripts to run Stable-Diffusion-v1.5 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_generation
  • Model Stats:
    • Input: Text prompt to generate image
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
text_encoder w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 11.062 ms 0 - 9 MB NPU Use Export Script
text_encoder w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 5.434 ms 0 - 4 MB NPU Use Export Script
text_encoder w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 5.897 ms 0 - 10 MB NPU Use Export Script
text_encoder w8a16 SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 11.062 ms 0 - 9 MB NPU Use Export Script
text_encoder w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 5.404 ms 0 - 2 MB NPU Use Export Script
text_encoder w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 5.383 ms 0 - 4 MB NPU Use Export Script
text_encoder w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 5.897 ms 0 - 10 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 5.388 ms 0 - 2 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 5.707 ms 0 - 162 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 3.884 ms 0 - 18 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 4.116 ms 0 - 19 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 3.504 ms 0 - 15 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 3.846 ms 0 - 14 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 5.842 ms 1 - 1 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 5.942 ms 157 - 157 MB NPU Use Export Script
unet w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 263.519 ms 0 - 7 MB NPU Use Export Script
unet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 111.179 ms 0 - 2 MB NPU Use Export Script
unet w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 105.264 ms 0 - 8 MB NPU Use Export Script
unet w8a16 SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 263.519 ms 0 - 7 MB NPU Use Export Script
unet w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 111.759 ms 0 - 2 MB NPU Use Export Script
unet w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 112.295 ms 0 - 2 MB NPU Use Export Script
unet w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 105.264 ms 0 - 8 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 110.854 ms 0 - 2 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 112.905 ms 0 - 898 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 77.505 ms 0 - 17 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 79.744 ms 0 - 16 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 68.211 ms 0 - 15 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 59.789 ms 0 - 19 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 113.189 ms 0 - 0 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 114.173 ms 842 - 842 MB NPU Use Export Script
vae w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 719.119 ms 0 - 9 MB NPU Use Export Script
vae w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 269.222 ms 0 - 3 MB NPU Use Export Script
vae w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 249.106 ms 0 - 10 MB NPU Use Export Script
vae w8a16 SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 719.119 ms 0 - 9 MB NPU Use Export Script
vae w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 271.482 ms 0 - 3 MB NPU Use Export Script
vae w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 272.149 ms 0 - 2 MB NPU Use Export Script
vae w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 249.106 ms 0 - 10 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 269.96 ms 0 - 3 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 274.29 ms 0 - 66 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 204.3 ms 0 - 18 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 204.75 ms 3 - 21 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 194.981 ms 0 - 14 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 193.913 ms 3 - 17 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 265.408 ms 0 - 0 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 264.914 ms 63 - 63 MB NPU Use Export Script

Deploy to Snapdragon X Elite NPU

Please follow the Stable Diffusion Windows App tutorial to quantize model with custom weights.

Quantize and Deploy Your Own Fine-Tuned Stable Diffusion

Please follow the Quantize Stable Diffusion tutorial to quantize model with custom weights.

Installation

Install the package via pip:

pip install "qai-hub-models[stable-diffusion-v1-5]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.stable_diffusion_v1_5.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.stable_diffusion_v1_5.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v1_5.export
Profiling Results
------------------------------------------------------------
text_encoder
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 11.1                                 
Estimated peak memory usage (MB): [0, 9]                               
Total # Ops                     : 438                                  
Compute Unit(s)                 : npu (438 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
unet
Device                          : cs_8275 (ANDROID 14)                  
Runtime                         : QNN_CONTEXT_BINARY                    
Estimated inference time (ms)   : 263.5                                 
Estimated peak memory usage (MB): [0, 7]                                
Total # Ops                     : 4042                                  
Compute Unit(s)                 : npu (4042 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
vae
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 719.1                                
Estimated peak memory usage (MB): [0, 9]                               
Total # Ops                     : 175                                  
Compute Unit(s)                 : npu (175 ops) gpu (0 ops) cpu (0 ops)

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Stable-Diffusion-v1.5's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Stable-Diffusion-v1.5 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support