Midas-V2 / README.md
qaihm-bot's picture
v0.31.0
9659a99 verified
metadata
library_name: pytorch
license: other
tags:
  - android
pipeline_tag: depth-estimation

Midas-V2: Optimized for Mobile Deployment

Deep Convolutional Neural Network model for depth estimation

Midas is designed for estimating depth at each point in an image.

This model is an implementation of Midas-V2 found here.

This repository provides scripts to run Midas-V2 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.depth_estimation
  • Model Stats:
    • Model checkpoint: MiDaS_small
    • Input resolution: 256x256
    • Number of parameters: 16.6M
    • Model size (float): 63.2 MB
    • Model size (w8a8): 16.6 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Midas-V2 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 12.847 ms 0 - 42 MB NPU Midas-V2.tflite
Midas-V2 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 11.829 ms 1 - 29 MB NPU Midas-V2.dlc
Midas-V2 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 4.969 ms 0 - 50 MB NPU Midas-V2.tflite
Midas-V2 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 6.483 ms 0 - 37 MB NPU Midas-V2.dlc
Midas-V2 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 3.206 ms 0 - 307 MB NPU Midas-V2.tflite
Midas-V2 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 2.973 ms 0 - 12 MB NPU Midas-V2.dlc
Midas-V2 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 4.48 ms 0 - 42 MB NPU Midas-V2.tflite
Midas-V2 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 4.162 ms 1 - 29 MB NPU Midas-V2.dlc
Midas-V2 float SA7255P ADP Qualcomm® SA7255P TFLITE 12.847 ms 0 - 42 MB NPU Midas-V2.tflite
Midas-V2 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 11.829 ms 1 - 29 MB NPU Midas-V2.dlc
Midas-V2 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 3.229 ms 0 - 288 MB NPU Midas-V2.tflite
Midas-V2 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 2.978 ms 0 - 26 MB NPU Midas-V2.dlc
Midas-V2 float SA8295P ADP Qualcomm® SA8295P TFLITE 5.889 ms 0 - 28 MB NPU Midas-V2.tflite
Midas-V2 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 5.331 ms 1 - 29 MB NPU Midas-V2.dlc
Midas-V2 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 3.228 ms 0 - 311 MB NPU Midas-V2.tflite
Midas-V2 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 2.978 ms 0 - 13 MB NPU Midas-V2.dlc
Midas-V2 float SA8775P ADP Qualcomm® SA8775P TFLITE 4.48 ms 0 - 42 MB NPU Midas-V2.tflite
Midas-V2 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 4.162 ms 1 - 29 MB NPU Midas-V2.dlc
Midas-V2 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 3.236 ms 0 - 310 MB NPU Midas-V2.tflite
Midas-V2 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 2.987 ms 1 - 12 MB NPU Midas-V2.dlc
Midas-V2 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 2.957 ms 0 - 73 MB NPU Midas-V2.onnx
Midas-V2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 2.351 ms 0 - 67 MB NPU Midas-V2.tflite
Midas-V2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.075 ms 1 - 43 MB NPU Midas-V2.dlc
Midas-V2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 2.034 ms 0 - 49 MB NPU Midas-V2.onnx
Midas-V2 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 1.787 ms 0 - 44 MB NPU Midas-V2.tflite
Midas-V2 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 1.887 ms 0 - 33 MB NPU Midas-V2.dlc
Midas-V2 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 1.924 ms 1 - 32 MB NPU Midas-V2.onnx
Midas-V2 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 3.543 ms 180 - 180 MB NPU Midas-V2.dlc
Midas-V2 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 3.052 ms 35 - 35 MB NPU Midas-V2.onnx
Midas-V2 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.453 ms 0 - 28 MB NPU Midas-V2.tflite
Midas-V2 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 2.844 ms 0 - 29 MB NPU Midas-V2.dlc
Midas-V2 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.443 ms 0 - 51 MB NPU Midas-V2.tflite
Midas-V2 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.821 ms 0 - 47 MB NPU Midas-V2.dlc
Midas-V2 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.063 ms 0 - 148 MB NPU Midas-V2.tflite
Midas-V2 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.285 ms 0 - 133 MB NPU Midas-V2.dlc
Midas-V2 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.404 ms 0 - 29 MB NPU Midas-V2.tflite
Midas-V2 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.583 ms 0 - 30 MB NPU Midas-V2.dlc
Midas-V2 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 3.748 ms 0 - 46 MB NPU Midas-V2.tflite
Midas-V2 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 5.733 ms 0 - 46 MB NPU Midas-V2.dlc
Midas-V2 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 15.948 ms 0 - 2 MB NPU Midas-V2.tflite
Midas-V2 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 2.453 ms 0 - 28 MB NPU Midas-V2.tflite
Midas-V2 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 2.844 ms 0 - 29 MB NPU Midas-V2.dlc
Midas-V2 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.075 ms 0 - 148 MB NPU Midas-V2.tflite
Midas-V2 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.292 ms 0 - 133 MB NPU Midas-V2.dlc
Midas-V2 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 1.903 ms 0 - 31 MB NPU Midas-V2.tflite
Midas-V2 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.191 ms 0 - 33 MB NPU Midas-V2.dlc
Midas-V2 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.076 ms 0 - 150 MB NPU Midas-V2.tflite
Midas-V2 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.274 ms 0 - 133 MB NPU Midas-V2.dlc
Midas-V2 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.404 ms 0 - 29 MB NPU Midas-V2.tflite
Midas-V2 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.583 ms 0 - 30 MB NPU Midas-V2.dlc
Midas-V2 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 1.07 ms 0 - 149 MB NPU Midas-V2.tflite
Midas-V2 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 1.296 ms 0 - 133 MB NPU Midas-V2.dlc
Midas-V2 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 129.801 ms 13 - 126 MB NPU Midas-V2.onnx
Midas-V2 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.761 ms 0 - 58 MB NPU Midas-V2.tflite
Midas-V2 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.906 ms 0 - 58 MB NPU Midas-V2.dlc
Midas-V2 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 100.155 ms 23 - 483 MB NPU Midas-V2.onnx
Midas-V2 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 0.718 ms 0 - 29 MB NPU Midas-V2.tflite
Midas-V2 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 0.785 ms 0 - 31 MB NPU Midas-V2.dlc
Midas-V2 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 89.688 ms 13 - 454 MB NPU Midas-V2.onnx
Midas-V2 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.504 ms 119 - 119 MB NPU Midas-V2.dlc
Midas-V2 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 144.558 ms 69 - 69 MB NPU Midas-V2.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[midas]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.midas.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.midas.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.midas.export
Profiling Results
------------------------------------------------------------
Midas-V2
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 12.8                                 
Estimated peak memory usage (MB): [0, 42]                              
Total # Ops                     : 138                                  
Compute Unit(s)                 : npu (138 ops) gpu (0 ops) cpu (0 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.midas import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.midas.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.midas.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Midas-V2's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Midas-V2 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community