HRNetPose: Optimized for Mobile Deployment
Perform accurate human pose estimation
HRNet performs pose estimation in high-resolution representations.
This model is an implementation of HRNetPose found here.
This repository provides scripts to run HRNetPose on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.pose_estimation
- Model Stats:
- Model checkpoint: hrnet_posenet_FP32_state_dict
- Input resolution: 256x192
- Number of parameters: 28.5M
- Model size (float): 109 MB
- Model size (w8a8): 28 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 102.912 ms | 0 - 71 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 14.216 ms | 1 - 10 MB | NPU | Use Export Script |
HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.926 ms | 0 - 114 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 5.128 ms | 0 - 51 MB | NPU | Use Export Script |
HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.666 ms | 0 - 185 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 2.678 ms | 1 - 3 MB | NPU | Use Export Script |
HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.453 ms | 0 - 71 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 4.339 ms | 1 - 14 MB | NPU | Use Export Script |
HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 102.912 ms | 0 - 71 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 14.216 ms | 1 - 10 MB | NPU | Use Export Script |
HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.674 ms | 0 - 34 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 2.646 ms | 1 - 2 MB | NPU | Use Export Script |
HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.557 ms | 0 - 67 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 4.558 ms | 1 - 18 MB | NPU | Use Export Script |
HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.666 ms | 0 - 81 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 2.689 ms | 1 - 3 MB | NPU | Use Export Script |
HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.453 ms | 0 - 71 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 4.339 ms | 1 - 14 MB | NPU | Use Export Script |
HRNetPose | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.668 ms | 0 - 19 MB | NPU | HRNetPose.tflite |
HRNetPose | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 2.636 ms | 1 - 14 MB | NPU | Use Export Script |
HRNetPose | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.743 ms | 0 - 134 MB | NPU | HRNetPose.onnx |
HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.956 ms | 0 - 114 MB | NPU | HRNetPose.tflite |
HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 2.004 ms | 1 - 54 MB | NPU | Use Export Script |
HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.11 ms | 0 - 92 MB | NPU | HRNetPose.onnx |
HRNetPose | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.853 ms | 0 - 75 MB | NPU | HRNetPose.tflite |
HRNetPose | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 1.56 ms | 1 - 40 MB | NPU | Use Export Script |
HRNetPose | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.739 ms | 0 - 52 MB | NPU | HRNetPose.onnx |
HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.847 ms | 1 - 1 MB | NPU | Use Export Script |
HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.694 ms | 55 - 55 MB | NPU | HRNetPose.onnx |
HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.632 ms | 0 - 48 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 2.882 ms | 0 - 10 MB | NPU | Use Export Script |
HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.365 ms | 0 - 96 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 1.871 ms | 0 - 83 MB | NPU | Use Export Script |
HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.994 ms | 0 - 132 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 1.139 ms | 0 - 4 MB | NPU | Use Export Script |
HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.327 ms | 0 - 50 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 1.419 ms | 0 - 14 MB | NPU | Use Export Script |
HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.843 ms | 0 - 74 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 5.222 ms | 0 - 11 MB | NPU | Use Export Script |
HRNetPose | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 17.399 ms | 0 - 2 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.632 ms | 0 - 48 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 2.882 ms | 0 - 10 MB | NPU | Use Export Script |
HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.984 ms | 0 - 131 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 1.154 ms | 0 - 3 MB | NPU | Use Export Script |
HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.734 ms | 0 - 51 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 1.879 ms | 0 - 18 MB | NPU | Use Export Script |
HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.984 ms | 0 - 135 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 1.138 ms | 0 - 2 MB | NPU | Use Export Script |
HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.327 ms | 0 - 50 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 1.419 ms | 0 - 14 MB | NPU | Use Export Script |
HRNetPose | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.956 ms | 0 - 133 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 1.162 ms | 0 - 18 MB | NPU | Use Export Script |
HRNetPose | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.021 ms | 3 - 103 MB | NPU | HRNetPose.onnx |
HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.724 ms | 0 - 88 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.852 ms | 0 - 80 MB | NPU | Use Export Script |
HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.4 ms | 0 - 164 MB | NPU | HRNetPose.onnx |
HRNetPose | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.694 ms | 0 - 53 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.735 ms | 0 - 52 MB | NPU | Use Export Script |
HRNetPose | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.238 ms | 0 - 122 MB | NPU | HRNetPose.onnx |
HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.261 ms | 0 - 0 MB | NPU | Use Export Script |
HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.833 ms | 26 - 26 MB | NPU | HRNetPose.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[hrnet-pose]" torch==2.4.1 -f https://download.openmmlab.com/mmcv/dist/cpu/torch2.4/index.html -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.hrnet_pose.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.hrnet_pose.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.hrnet_pose.export
Profiling Results
------------------------------------------------------------
HRNetPose
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 102.9
Estimated peak memory usage (MB): [0, 71]
Total # Ops : 516
Compute Unit(s) : npu (516 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.hrnet_pose import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.hrnet_pose.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.hrnet_pose.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on HRNetPose's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of HRNetPose can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 151