FFNet-40S: Optimized for Mobile Deployment
Semantic segmentation for automotive street scenes
FFNet-40S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
This model is an implementation of FFNet-40S found here.
This repository provides scripts to run FFNet-40S on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: ffnet40S_dBBB_cityscapes_state_dict_quarts
- Input resolution: 2048x1024
- Number of output classes: 19
- Number of parameters: 13.9M
- Model size (float): 53.1 MB
- Model size (w8a8): 13.5 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
FFNet-40S | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 150.017 ms | 3 - 53 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 133.298 ms | 24 - 79 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 57.21 ms | 3 - 82 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 66.446 ms | 24 - 80 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 43.963 ms | 2 - 36 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 34.315 ms | 24 - 46 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 57.67 ms | 2 - 52 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 47.945 ms | 24 - 79 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 150.017 ms | 3 - 53 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 133.298 ms | 24 - 79 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 44.208 ms | 0 - 48 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 34.245 ms | 24 - 48 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 62.739 ms | 2 - 53 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 52.07 ms | 8 - 61 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 44.073 ms | 2 - 60 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 34.296 ms | 24 - 47 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 57.67 ms | 2 - 52 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 47.945 ms | 24 - 79 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 44.071 ms | 0 - 32 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 33.915 ms | 24 - 46 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 28.913 ms | 0 - 52 MB | NPU | FFNet-40S.onnx |
FFNet-40S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 29.662 ms | 2 - 85 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 23.683 ms | 24 - 82 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 19.226 ms | 27 - 106 MB | NPU | FFNet-40S.onnx |
FFNet-40S | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 30.326 ms | 2 - 56 MB | NPU | FFNet-40S.tflite |
FFNet-40S | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 21.416 ms | 24 - 90 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 18.396 ms | 29 - 82 MB | NPU | FFNet-40S.onnx |
FFNet-40S | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 36.72 ms | 30 - 30 MB | NPU | FFNet-40S.dlc |
FFNet-40S | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 30.988 ms | 24 - 24 MB | NPU | FFNet-40S.onnx |
FFNet-40S | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 105.678 ms | 1 - 34 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 10.127 ms | 1 - 53 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 9.124 ms | 1 - 19 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 9.883 ms | 1 - 35 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 56.39 ms | 1 - 91 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 311.027 ms | 1 - 8 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 105.678 ms | 1 - 34 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 9.138 ms | 1 - 11 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 13.602 ms | 1 - 38 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 9.226 ms | 1 - 19 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 9.883 ms | 1 - 35 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 9.231 ms | 1 - 11 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 10.802 ms | 0 - 41 MB | NPU | FFNet-40S.onnx |
FFNet-40S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 6.645 ms | 1 - 51 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.98 ms | 5 - 70 MB | NPU | FFNet-40S.onnx |
FFNet-40S | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 6.581 ms | 1 - 39 MB | NPU | FFNet-40S.tflite |
FFNet-40S | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.313 ms | 0 - 51 MB | NPU | FFNet-40S.onnx |
FFNet-40S | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 13.821 ms | 9 - 9 MB | NPU | FFNet-40S.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[ffnet-40s]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ffnet_40s.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_40s.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ffnet_40s.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.ffnet_40s import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ffnet_40s.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_40s.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on FFNet-40S's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of FFNet-40S can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 40