|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Bingsu/Gameplay_Images |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-so400m-patch14-384 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- Gameplay |
|
- Classcode |
|
- '10' |
|
--- |
|
|
|
 |
|
|
|
# **Gameplay-Classcode-10** |
|
|
|
> **Gameplay-Classcode-10** is a vision-language model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies gameplay screenshots or thumbnails into one of ten popular video game titles. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
Among Us 0.9990 0.9920 0.9955 1000 |
|
Apex Legends 0.9737 0.9990 0.9862 1000 |
|
Fortnite 0.9960 0.9910 0.9935 1000 |
|
Forza Horizon 0.9990 0.9820 0.9904 1000 |
|
Free Fire 0.9930 0.9860 0.9895 1000 |
|
Genshin Impact 0.9831 0.9890 0.9860 1000 |
|
God of War 0.9930 0.9930 0.9930 1000 |
|
Minecraft 0.9990 0.9990 0.9990 1000 |
|
Roblox 0.9832 0.9960 0.9896 1000 |
|
Terraria 1.0000 0.9910 0.9955 1000 |
|
|
|
accuracy 0.9918 10000 |
|
macro avg 0.9919 0.9918 0.9918 10000 |
|
weighted avg 0.9919 0.9918 0.9918 10000 |
|
``` |
|
|
|
 |
|
|
|
The model predicts one of the following **game categories**: |
|
|
|
- **0:** Among Us |
|
- **1:** Apex Legends |
|
- **2:** Fortnite |
|
- **3:** Forza Horizon |
|
- **4:** Free Fire |
|
- **5:** Genshin Impact |
|
- **6:** God of War |
|
- **7:** Minecraft |
|
- **8:** Roblox |
|
- **9:** Terraria |
|
|
|
--- |
|
|
|
# **Run with Transformers 🤗** |
|
|
|
```python |
|
!pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Gameplay-Classcode-10" # Replace with your actual model path |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# Label mapping |
|
id2label = { |
|
0: "Among Us", |
|
1: "Apex Legends", |
|
2: "Fortnite", |
|
3: "Forza Horizon", |
|
4: "Free Fire", |
|
5: "Genshin Impact", |
|
6: "God of War", |
|
7: "Minecraft", |
|
8: "Roblox", |
|
9: "Terraria" |
|
} |
|
|
|
def classify_game(image): |
|
"""Predicts the game title based on the gameplay image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))} |
|
predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True)) |
|
return predictions |
|
|
|
# Gradio interface |
|
iface = gr.Interface( |
|
fn=classify_game, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Game Prediction Scores"), |
|
title="Gameplay-Classcode-10", |
|
description="Upload a gameplay screenshot or thumbnail to identify the game title (Among Us, Fortnite, Minecraft, etc.)." |
|
) |
|
|
|
# Launch the app |
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
# **Intended Use** |
|
|
|
This model can be used for: |
|
|
|
- **Automatic tagging of gameplay content for streamers and creators** |
|
- **Organizing gaming datasets** |
|
- **Enhancing searchability in gameplay video repositories** |
|
- **Training AI systems for game-related content moderation or recommendations** |