YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
PersianEase
This model is fine-tuned to generate informal text from formal text based on the input provided. It has been fine-tuned on [Mohavere Dataset] (Takalli vahideh, Kalantari, Fateme, Shamsfard, Mehrnoush, Developing an Informal-Formal Persian Corpus, 2022.) using the pretrained model persian-t5-formality-transfer.
Evaluation Metrics
Metric | Basic Model | Base Persian T5 | Previous Semester Model | Our Model |
---|---|---|---|---|
BLEU-1 | 0.269 | 0.256 | 0.397 | 0.664 |
BLEU-2 | 0.137 | 0.171 | 0.299 | 0.539 |
BLEU-3 | 0.084 | 0.121 | 0.231 | 0.444 |
BLEU-4 | 0.054 | 0.086 | 0.177 | 0.364 |
Bert-Score Precision | 0.581 | 0.583 | 0.665 | 0.826 |
Bert-Score Recall | 0.629 | 0.614 | 0.659 | 0.820 |
Bert-Score F1 Score | 0.603 | 0.595 | 0.658 | 0.822 |
ROUGE-1 F1 Score | 0.259 | - | - | 0.701 |
ROUGE-2 F1 Score | 0.061 | - | - | 0.475 |
ROUGE-l F1 Score | 0.250 | - | - | 0.675 |
Usage
from transformers import (T5ForConditionalGeneration, AutoTokenizer, pipeline)
import torch
model = T5ForConditionalGeneration.from_pretrained('parsi-ai-nlpclass/PersianEase')
tokenizer = AutoTokenizer.from_pretrained('parsi-ai-nlpclass/PersianEase')
pipe = pipeline(task='text2text-generation', model=model, tokenizer=tokenizer)
def test_model(text):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
inputs = tokenizer.encode("formal: " + text, return_tensors='pt', max_length=128, truncation=True, padding='max_length')
inputs = inputs.to(device)
outputs = model.generate(inputs, max_length=128, num_beams=4, temperature=0.7)
print("Output:", tokenizer.decode(outputs[0], skip_special_tokens=True))
text = " من فقط میخواستم بگویم که چقدر قدردان همه چیزهایی هستم که برای من انجام داده ای."
print("Original:", text)
test_model(text)
# output: من فقط میخوام بگم که چقدر قدردان همه کاریم که برای من انجام دادی. دوستی تو برای من یه هدیه بزرگه و من همیشه از داشتن یه دوست مثل تو خوشحالم.
text = " آرزویش است او را یک رستوران ببرم."
print("Original:", text)
test_model(text)
# output: آرزوشه یه رستوران ببرمش
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support