distilroberta-roberta-finetuned-financial-news-sentiment-analysis-european
This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.6637
- eval_model_preparation_time: 0.0015
- eval_accuracy: 0.7764
- eval_macro_precision: 0.7737
- eval_macro_recall: 0.7865
- eval_macro_f1: 0.7762
- eval_neutral_precision: 0.8569
- eval_neutral_recall: 0.7260
- eval_neutral_f1: 0.7860
- eval_positive_precision: 0.7815
- eval_positive_recall: 0.8178
- eval_positive_f1: 0.7992
- eval_negative_precision: 0.6827
- eval_negative_recall: 0.8157
- eval_negative_f1: 0.7433
- eval_runtime: 18.4835
- eval_samples_per_second: 449.589
- eval_steps_per_second: 28.133
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 846
- num_epochs: 7
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1