distilroberta-roberta-finetuned-financial-news-sentiment-analysis-european

This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.6637
  • eval_model_preparation_time: 0.0015
  • eval_accuracy: 0.7764
  • eval_macro_precision: 0.7737
  • eval_macro_recall: 0.7865
  • eval_macro_f1: 0.7762
  • eval_neutral_precision: 0.8569
  • eval_neutral_recall: 0.7260
  • eval_neutral_f1: 0.7860
  • eval_positive_precision: 0.7815
  • eval_positive_recall: 0.8178
  • eval_positive_f1: 0.7992
  • eval_negative_precision: 0.6827
  • eval_negative_recall: 0.8157
  • eval_negative_f1: 0.7433
  • eval_runtime: 18.4835
  • eval_samples_per_second: 449.589
  • eval_steps_per_second: 28.133
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 846
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nojedag/distilroberta-roberta-finetuned-financial-news-sentiment-analysis-european

Finetuned
(651)
this model

Collection including nojedag/distilroberta-roberta-finetuned-financial-news-sentiment-analysis-european