Whisper tiny - Patois

This model is a fine-tuned version of openai/whisper-tiny on the Patois Music Transcription dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6927
  • Wer: 0.8005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6981 2.6490 400 1.7500 1.2964
1.0133 5.2980 800 1.4418 0.9557
0.7521 7.9470 1200 1.3821 0.8719
0.5125 10.5960 1600 1.4081 0.7962
0.3403 13.2450 2000 1.4613 0.8105
0.2737 15.8940 2400 1.5187 0.7902
0.1871 18.5430 2800 1.5868 0.7868
0.146 21.1921 3200 1.6405 0.7881
0.13 23.8411 3600 1.6760 0.8007
0.1154 26.4901 4000 1.6927 0.8005

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for neddamj/whisper-tiny-patois

Finetuned
(1593)
this model

Evaluation results