|
--- |
|
language: |
|
- he |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- ivrit-ai/whisper-training |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Tiny Hebrew |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: ivrit-ai/whisper-training |
|
type: ivrit-ai/whisper-training |
|
args: 'config: he, split: train' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 55.88158581116328 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Tiny Hebrew |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the ivrit-ai/whisper-training dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.973 | 0.13 | 500 | 0.8480 | 77.6213 | |
|
| 0.9024 | 0.25 | 1000 | 0.7710 | 67.9838 | |
|
| 0.8049 | 0.38 | 1500 | 0.7499 | 66.7384 | |
|
| 0.7221 | 0.5 | 2000 | 0.7092 | 64.7953 | |
|
| 0.7464 | 0.63 | 2500 | 0.6939 | 62.7543 | |
|
| 0.7396 | 0.75 | 3000 | 0.6839 | 62.5261 | |
|
| 0.7336 | 0.88 | 3500 | 0.6716 | 61.2350 | |
|
| 0.6118 | 1.01 | 4000 | 0.6512 | 58.4637 | |
|
| 0.6299 | 1.13 | 4500 | 0.6564 | 60.1721 | |
|
| 0.6318 | 1.26 | 5000 | 0.6475 | 58.8550 | |
|
| 0.6315 | 1.38 | 5500 | 0.6361 | 58.9724 | |
|
| 0.6081 | 1.51 | 6000 | 0.6321 | 57.1596 | |
|
| 0.6487 | 1.63 | 6500 | 0.6459 | 58.5616 | |
|
| 0.6481 | 1.76 | 7000 | 0.6298 | 56.9379 | |
|
| 0.5833 | 1.88 | 7500 | 0.6303 | 57.8965 | |
|
| 0.5689 | 2.01 | 8000 | 0.6305 | 56.1750 | |
|
| 0.5223 | 2.14 | 8500 | 0.6335 | 56.6967 | |
|
| 0.574 | 2.26 | 9000 | 0.6248 | 55.3730 | |
|
| 0.5841 | 2.39 | 9500 | 0.6320 | 55.6273 | |
|
| 0.5533 | 2.51 | 10000 | 0.6254 | 55.8816 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|