CineMA - A Foundation Model for Cine Cardiac Magnetic Resonance Images πŸŽ₯πŸ«€

CineMA is a foundation model for Cine cardiac magnetic resonance (CMR) imaging based on Masked-Autoencoder. CineMA has been pre-trained on UK Biobank data and fine-tuned on multiple clinically relevant tasks such as ventricle and myocaridum segmentation, ejection fraction (EF) regression, cardiovascular disease (CVD) detection and classification, and mid-valve plane and apical landmark localization. The model has been evaluated on multiple datasets, including ACDC, M&Ms, M&Ms2, Kaggle, Rescan, and Landmark, etc.

➑️ Manuscript: https://arxiv.org/abs/2506.00679.

➑️ Code: mathpluscode/CineMA

Fine-tuned CineMA Models

The filenames of fine-tuned model weights follow the convention of finetuned/<task>/<data>_<view>/<data>_<view>_<seed>.safetensors where number 0, 1, and 2 correspond to the different training seeds.

Check the "Inference Example" column to see example inference scripts using these trained models.

Training Task Training Data Input View Input Timeframes Model Weights and Configurations Inference Example
Ventricle and myocardium segmentation ACDC SAX 1 finetuned/segmentation/acdc_sax/acdc_sax_0.safetensors
finetuned/segmentation/acdc_sax/acdc_sax_1.safetensors
finetuned/segmentation/acdc_sax/acdc_sax_2.safetensors
finetuned/segmentation/acdc_sax/config.yaml
segmentation_sax.py
Ventricle and myocardium segmentation M&Ms SAX 1 finetuned/segmentation/mnms_sax/mnms_sax_0.safetensors
finetuned/segmentation/mnms_sax/mnms_sax_1.safetensors
finetuned/segmentation/mnms_sax/mnms_sax_2.safetensors
finetuned/segmentation/mnms_sax/config.yaml
segmentation_sax.py
Ventricle and myocardium segmentation M&Ms2 SAX 1 finetuned/segmentation/mnms2_sax/mnms2_sax_0.safetensors
finetuned/segmentation/mnms2_sax/mnms2_sax_1.safetensors
finetuned/segmentation/mnms2_sax/mnms2_sax_2.safetensors
finetuned/segmentation/mnms2_sax/config.yaml
segmentation_sax.py
Ventricle and myocardium segmentation M&Ms2 LAX 4C 1 finetuned/segmentation/mnms2_lax_4c/mnms2_lax_4c_0.safetensors
finetuned/segmentation/mnms2_lax_4c/mnms2_lax_4c_1.safetensors
finetuned/segmentation/mnms2_lax_4c/mnms2_lax_4c_2.safetensors
finetuned/segmentation/mnms2_lax_4c/config.yaml
segmentation_lax_4c.py
CVD classification ACDC SAX 2 (ED and ES) finetuned/classification_cvd/acdc_sax/acdc_sax_0.safetensors
finetuned/classification_cvd/acdc_sax/acdc_sax_1.safetensors
finetuned/classification_cvd/acdc_sax/acdc_sax_2.safetensors
finetuned/classification_cvd/acdc_sax/config.yaml
classification_cvd.py
CVD classification M&Ms SAX 2 (ED and ES) finetuned/classification_cvd/mnms_sax/mnms_sax_0.safetensors
finetuned/classification_cvd/mnms_sax/mnms_sax_1.safetensors
finetuned/classification_cvd/mnms_sax/mnms_sax_2.safetensors
finetuned/classification_cvd/mnms_sax/config.yaml
classification_cvd.py
CVD classification M&Ms2 SAX 2 (ED and ES) finetuned/classification_cvd/mnms2_sax/mnms2_sax_0.safetensors
finetuned/classification_cvd/mnms2_sax/mnms2_sax_1.safetensors
finetuned/classification_cvd/mnms2_sax/mnms2_sax_2.safetensors
finetuned/classification_cvd/mnms2_sax/config.yaml
classification_cvd.py
CVD classification M&Ms2 LAX 4C 2 (ED and ES) finetuned/classification_cvd/mnms2_lax_4c/mnms2_lax_4c_0.safetensors
finetuned/classification_cvd/mnms2_lax_4c/mnms2_lax_4c_1.safetensors
finetuned/classification_cvd/mnms2_lax_4c/mnms2_lax_4c_2.safetensors
finetuned/classification_cvd/mnms2_lax_4c/config.yaml
classification_cvd.py
Patient sex classification M&Ms SAX 2 (ED and ES) finetuned/classification_sex/mnms_sax/mnms_sax_0.safetensors
finetuned/classification_sex/mnms_sax/mnms_sax_1.safetensors
finetuned/classification_sex/mnms_sax/mnms_sax_2.safetensors
finetuned/classification_sex/mnms_sax/config.yaml
classification_sex.py
CMR machine vendor classification M&Ms2 SAX 2 (ED and ES) finetuned/classification_vendor/mnms2_sax/mnms2_sax_0.safetensors
finetuned/classification_vendor/mnms2_sax/mnms2_sax_1.safetensors
finetuned/classification_vendor/mnms2_sax/mnms2_sax_2.safetensors
finetuned/classification_vendor/mnms2_sax/config.yaml
classification_vendor.py
CMR machine vendor classification M&Ms2 LAX 4C 2 (ED and ES) finetuned/classification_vendor/mnms2_lax_4c/mnms2_lax_4c_0.safetensors
finetuned/classification_vendor/mnms2_lax_4c/mnms2_lax_4c_1.safetensors
finetuned/classification_vendor/mnms2_lax_4c/mnms2_lax_4c_2.safetensors
finetuned/classification_vendor/mnms2_lax_4c/config.yaml
classification_vendor.py
Direct EF regression ACDC SAX 2 (ED and ES) finetuned/regression_ef/acdc_sax/acdc_sax_0.safetensors
finetuned/regression_ef/acdc_sax/acdc_sax_1.safetensors
finetuned/regression_ef/acdc_sax/acdc_sax_2.safetensors
finetuned/regression_ef/acdc_sax/config.yaml
regression_ef.py
Direct EF regression M&Ms SAX 2 (ED and ES) finetuned/regression_ef/mnms_sax/mnms_sax_0.safetensors
finetuned/regression_ef/mnms_sax/mnms_sax_1.safetensors
finetuned/regression_ef/mnms_sax/mnms_sax_2.safetensors
finetuned/regression_ef/mnms_sax/config.yaml
regression_ef.py
Direct EF regression M&Ms2 SAX 2 (ED and ES) finetuned/regression_ef/mnms2_sax/mnms2_sax_0.safetensors
finetuned/regression_ef/mnms2_sax/mnms2_sax_1.safetensors
finetuned/regression_ef/mnms2_sax/mnms2_sax_2.safetensors
finetuned/regression_ef/mnms2_sax/config.yaml
regression_ef.py
Direct EF regression M&Ms2 LAX 4C 2 (ED and ES) finetuned/regression_ef/mnms2_lax_4c/mnms2_lax_4c_0.safetensors
finetuned/regression_ef/mnms2_lax_4c/mnms2_lax_4c_1.safetensors
finetuned/regression_ef/mnms2_lax_4c/mnms2_lax_4c_2.safetensors
finetuned/regression_ef/mnms2_lax_4c/config.yaml
regression_ef.py
Patient BMI regression ACDC SAX 2 (ED and ES) finetuned/regression_bmi/acdc_sax/acdc_sax_0.safetensors
finetuned/regression_bmi/acdc_sax/acdc_sax_1.safetensors
finetuned/regression_bmi/acdc_sax/acdc_sax_2.safetensors
finetuned/regression_bmi/acdc_sax/config.yaml
regression_bmi.py
Patient age regression M&Ms SAX 2 (ED and ES) finetuned/regression_age/mnms_sax/mnms_sax_0.safetensors
finetuned/regression_age/mnms_sax/mnms_sax_1.safetensors
finetuned/regression_age/mnms_sax/mnms_sax_2.safetensors
finetuned/regression_age/mnms_sax/config.yaml
regression_age.py
Landmark localization by heatmap regression Landmark LAX 2C 1 finetuned/landmark_heatmap/lax_2c/lax_2c_0.safetensors
finetuned/landmark_heatmap/lax_2c/lax_2c_1.safetensors
finetuned/landmark_heatmap/lax_2c/lax_2c_2.safetensors
finetuned/landmark_heatmap/lax_2c/config.yaml
landmark_heatmap.py
Landmark localization by heatmap regression Landmark LAX 4C 1 finetuned/landmark_heatmap/lax_4c/lax_4c_0.safetensors
finetuned/landmark_heatmap/lax_4c/lax_4c_1.safetensors
finetuned/landmark_heatmap/lax_4c/lax_4c_2.safetensors
finetuned/landmark_heatmap/lax_4c/config.yaml
landmark_heatmap.py
Landmark localization by coordinates regression Landmark LAX 2C 1 finetuned/landmark_coordinate/lax_2c/lax_2c_0.safetensors
finetuned/landmark_coordinate/lax_2c/lax_2c_1.safetensors
finetuned/landmark_coordinate/lax_2c/lax_2c_2.safetensors
finetuned/landmark_coordinate/lax_2c/config.yaml
landmark_coordinate.py
Landmark localization by coordinates regression Landmark LAX 4C 1 finetuned/landmark_coordinate/lax_4c/lax_4c_0.safetensors
finetuned/landmark_coordinate/lax_4c/lax_4c_1.safetensors
finetuned/landmark_coordinate/lax_4c/lax_4c_2.safetensors
finetuned/landmark_coordinate/lax_4c/config.yaml
landmark_coordinate.py

Pre-trained CineMA Model

The pre-trained CineMA model backbone is available at pretrained/cinema.safetensors with configuration pretrained/config.yaml.

Following scripts demonstrated how to fine-tune this backbone using a preprocessed version of ACDC dataset:

Citation

Contact

For questions or collaborations, please contact Yunguan Fu (yunguan.fu.18@ucl.ac.uk).

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train mathpluscode/CineMA

Space using mathpluscode/CineMA 1