data4elm_full_finetuned_no_lora
Fine-tuned Llama-400M model
Model Details
This model is a fully fine-tuned version of YongganFu/Llama-400M-12L.
Model Files
The model directory contains:
config.json
- Model configurationgeneration_config.json
- Generation settingsmodel.safetensors
- Model weights in safetensors formatspecial_tokens_map.json
- Special token mappingtokenizer.json
- Tokenizer configurationtokenizer.model
- Tokenizer modeltrainer_state.json
- Training state informationtraining_args.bin
- Training arguments
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model
model = AutoModelForCausalLM.from_pretrained("lxaw/data4elm_full_finetuned_no_lora")
tokenizer = AutoTokenizer.from_pretrained("lxaw/data4elm_full_finetuned_no_lora")
# Example usage
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Details
This model was fine-tuned using standard full fine-tuning (not parameter-efficient methods like LoRA).
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for lxaw/data4elm_full_finetuned_no_lora
Base model
YongganFu/Llama-400M-12L