metadata
license: mit
datasets:
- likaixin/IconStack-Captions-48M
- likaixin/IconStack-48M-Pre-Rendered
- starvector/svg-stack
language:
- en
metrics:
- accuracy
base_model:
- laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K
tags:
- art
- icon
model-index:
- name: IconClip-ViT-L-14
results:
- task:
type: zero-shot-classification
dataset:
name: ui-icon-dataset
type: ui-icon-dataset
metrics:
- name: acc@1
type: accuracy
value: 80.24
- name: acc@5
type: accuracy
value: 94.74
Model Description
A CLIP ViT-B/32 model trained with the IconStack dataset using OpenCLIP.
It scores 80.24% on zero-shot classification on icon-dataset.
Installation
You need to install open_clip
to use this model:
pip install open_clip_torch
Icon-to-Text Zero-Shot Classification
import torch
from PIL import Image
import open_clip
CLIP_TEXT_TEMPLATE = "an icon of {}"
ICON_CLASSES = ["add", "close", "play", ...] # Modify your class names here
model_checkpoint = "<path_to_your_local_model>"
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained=model_checkpoint)
model.eval()
tokenizer = open_clip.get_tokenizer('ViT-B-32')
image = preprocess(Image.open("icon.png")).unsqueeze(0)
text = tokenizer([CLIP_TEXT_TEMPLATE.format(cls) for cls in ICON_CLASSES])
with torch.no_grad(), torch.autocast("cuda"):
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs) # prints something like: [[1., 0., 0., ...]]