Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Eval Results
File size: 783 Bytes
87ac8c4
e1c7798
 
 
 
 
 
c814d59
 
 
e1c7798
 
 
 
 
c814d59
 
e1c7798
c814d59
e1c7798
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from time import time
from pprint import pprint
from transformers import pipeline
from datasets import load_dataset

# config
generate_kwargs = {"language": "japanese", "task": "transcribe"}
model_id = "kotoba-tech/kotoba-whisper-v1.0"
torch_dtype = torch.float32
device = "cpu"

# load model
pipe = pipeline(
    "automatic-speech-recognition",
    model=model_id,
    torch_dtype=torch_dtype,
    device=device,
)

test_audio = [
    "kotoba-whisper-eval/audio/long_interview_1.wav",
    "kotoba-whisper-eval/audio/manzai1.wav",
    "kotoba-whisper-eval/audio/manzai2.wav",
    "kotoba-whisper-eval/audio/manzai3.wav"
]
elapsed = {}
for x in test_audio:
    start = time()
    transcription = pipe(x, generate_kwargs=generate_kwargs)
    elapsed[x] = time() - start
pprint(elapsed)