Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Eval Results
asahi417 commited on
Commit
e1c7798
·
verified ·
1 Parent(s): f65a4d4

Create benchmark.py

Browse files
Files changed (1) hide show
  1. benchmark.py +27 -0
benchmark.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pprint import pprint
2
+ from transformers import pipeline
3
+ from datasets import load_dataset
4
+
5
+ # config
6
+ model_id = "kotoba-tech/kotoba-whisper-v1.0"
7
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
8
+
9
+ # load model
10
+ pipe = pipeline(
11
+ "automatic-speech-recognition",
12
+ model=model_id,
13
+ chunk_length_s=15,
14
+ batch_size=64
15
+ )
16
+ test_audio = [
17
+ "kotoba-whisper-eval/audio/long_interview_1.wav",
18
+ "kotoba-whisper-eval/audio/manzai1.wav",
19
+ "kotoba-whisper-eval/audio/manzai2.wav",
20
+ "kotoba-whisper-eval/audio/manzai3.wav"
21
+ ]
22
+ elapsed = {}
23
+ for x in test_audio:
24
+ start = time()
25
+ transcription = pipe(x, generate_kwargs=generate_kwargs)
26
+ elapsed[x] = time() - start
27
+ pprint(elapsed)