File size: 11,336 Bytes
47fb761 5a5ab29 4805443 fac0887 4805443 59a5c2a 4805443 47fb761 4805443 59a5c2a 4805443 47fb761 4805443 59a5c2a 4805443 59a5c2a 4805443 47fb761 4805443 47fb761 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 47fb761 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 57df8d3 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 59a5c2a 4805443 fac0887 4805443 21ba720 4805443 21ba720 4805443 47fb761 fac0887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
"""
# Orpheus TTS Handler - Explanation & Deployment Guide
This guide explains how to properly deploy the Orpheus TTS model with the custom
handler on Hugging Face Inference Endpoints.
## The Problem
Based on the error messages you're seeing:
1. Connection is working (you get responses)
2. But responses contain text rather than audio data
3. The response format is the standard HF format: [{"generated_text": "..."}]
This indicates that your endpoint is running the standard text generation handler
rather than the custom audio generation handler you've defined.
## Step 1: Properly package your handler
Create a `handler.py` file with your custom handler code:
"""
import os
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EndpointHandler:
def __init__(self, path=""):
logger.info("Initializing Orpheus TTS handler")
# Load the Orpheus model and tokenizer
self.model_name = "hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit"
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16
)
# Move model to GPU if available
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
logger.info(f"Model loaded on {self.device}")
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
logger.info("Tokenizer loaded")
# Load SNAC model for audio decoding
try:
self.snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
self.snac_model.to(self.device)
logger.info("SNAC model loaded")
except Exception as e:
logger.error(f"Error loading SNAC: {str(e)}")
raise
# Special tokens
self.start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
self.end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
self.padding_token = 128263
self.start_audio_token = 128257 # Start of Audio token
self.end_audio_token = 128258 # End of Audio token
self._warmed_up = False
logger.info("Handler initialization complete")
def preprocess(self, data):
"""
Preprocess input data before inference
"""
logger.info(f"Preprocessing data: {type(data)}")
# Handle health check
if data == "ping" or (isinstance(data, dict) and data.get("inputs") == "ping"):
logger.info("Health check detected")
return {"health_check": True}
# HF Inference API format: 'inputs' is the text, 'parameters' contains the config
if isinstance(data, dict) and "inputs" in data:
# Standard HF format
text = data["inputs"]
parameters = data.get("parameters", {})
else:
# Direct access (fallback)
text = data
parameters = {}
# Extract parameters from request
voice = parameters.get("voice", "tara")
temperature = float(parameters.get("temperature", 0.6))
top_p = float(parameters.get("top_p", 0.95))
max_new_tokens = int(parameters.get("max_new_tokens", 1200))
repetition_penalty = float(parameters.get("repetition_penalty", 1.1))
# Format prompt with voice
prompt = f"{voice}: {text}"
logger.info(f"Formatted prompt with voice {voice}")
# Tokenize
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
# Add special tokens
modified_input_ids = torch.cat([self.start_token, input_ids, self.end_tokens], dim=1)
# No need for padding as we're processing a single sequence
input_ids = modified_input_ids.to(self.device)
attention_mask = torch.ones_like(input_ids)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"health_check": False
}
def inference(self, inputs):
"""
Run model inference on the preprocessed inputs
"""
# Handle health check
if inputs.get("health_check", False):
return {"status": "ok"}
# Extract parameters
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
temperature = inputs["temperature"]
top_p = inputs["top_p"]
max_new_tokens = inputs["max_new_tokens"]
repetition_penalty = inputs["repetition_penalty"]
logger.info(f"Running inference with max_new_tokens={max_new_tokens}")
# Generate output tokens
with torch.no_grad():
generated_ids = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=self.end_audio_token,
)
logger.info(f"Generation complete, output shape: {generated_ids.shape}")
return generated_ids
def postprocess(self, generated_ids):
"""
Process generated tokens into audio
"""
# Handle health check response
if isinstance(generated_ids, dict) and "status" in generated_ids:
return generated_ids
logger.info("Postprocessing generated tokens")
# Find Start of Audio token
token_indices = (generated_ids == self.start_audio_token).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
logger.info(f"Found start audio token at position {last_occurrence_idx}")
else:
cropped_tensor = generated_ids
logger.warning("No start audio token found")
# Remove End of Audio tokens
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != self.end_audio_token]
processed_rows.append(masked_row)
# Prepare audio codes
code_lists = []
for row in processed_rows:
row_length = row.size(0)
# Ensure length is multiple of 7 for SNAC
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t.item() - 128266 for t in trimmed_row] # Adjust token values
code_lists.append(trimmed_row)
# Generate audio from codes
audio_samples = []
for code_list in code_lists:
logger.info(f"Processing code list of length {len(code_list)}")
if len(code_list) > 0:
audio = self.redistribute_codes(code_list)
audio_samples.append(audio)
else:
logger.warning("Empty code list, no audio to generate")
if not audio_samples:
logger.error("No audio samples generated")
return {"error": "No audio samples generated"}
# Return first (and only) audio sample
audio_sample = audio_samples[0].detach().squeeze().cpu().numpy()
# Convert to base64 for transmission
import base64
import io
import wave
# Convert float32 array to int16 for WAV format
audio_int16 = (audio_sample * 32767).astype(np.int16)
# Create WAV in memory
with io.BytesIO() as wav_io:
with wave.open(wav_io, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(24000) # 24kHz
wav_file.writeframes(audio_int16.tobytes())
wav_data = wav_io.getvalue()
# Encode as base64
audio_b64 = base64.b64encode(wav_data).decode('utf-8')
logger.info(f"Audio encoded as base64, length: {len(audio_b64)}")
return {
"audio_sample": audio_sample,
"audio_b64": audio_b64,
"sample_rate": 24000
}
def redistribute_codes(self, code_list):
"""
Reorganize tokens for SNAC decoding
"""
layer_1 = [] # Coarsest layer
layer_2 = [] # Intermediate layer
layer_3 = [] # Finest layer
num_groups = len(code_list) // 7
for i in range(num_groups):
idx = 7 * i
layer_1.append(code_list[idx])
layer_2.append(code_list[idx + 1] - 4096)
layer_3.append(code_list[idx + 2] - (2 * 4096))
layer_3.append(code_list[idx + 3] - (3 * 4096))
layer_2.append(code_list[idx + 4] - (4 * 4096))
layer_3.append(code_list[idx + 5] - (5 * 4096))
layer_3.append(code_list[idx + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1).unsqueeze(0).to(self.device),
torch.tensor(layer_2).unsqueeze(0).to(self.device),
torch.tensor(layer_3).unsqueeze(0).to(self.device)
]
# Decode audio
audio_hat = self.snac_model.decode(codes)
return audio_hat
def __call__(self, data):
"""
Main entry point for the handler
"""
# Run warmup only once, the first time __call__ is triggered
if not self._warmed_up:
self._warmup()
try:
logger.info(f"Received request: {type(data)}")
# Check if we need to handle the health check route
if data == "ping" or (isinstance(data, dict) and data.get("inputs") == "ping"):
logger.info("Processing health check request")
return {"status": "ok"}
preprocessed_inputs = self.preprocess(data)
model_outputs = self.inference(preprocessed_inputs)
response = self.postprocess(model_outputs)
return response
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return {"error": str(e)}
def _warmup(self):
try:
dummy_prompt = "tara: Hello"
input_ids = self.tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(self.device)
_ = self.model.generate(input_ids=input_ids, max_new_tokens=5)
self._warmed_up = True
except Exception as e:
print(f"[WARMUP ERROR] {str(e)}") |