Update handler.py
Browse files- handler.py +1 -76
handler.py
CHANGED
@@ -19,81 +19,6 @@ rather than the custom audio generation handler you've defined.
|
|
19 |
Create a `handler.py` file with your custom handler code:
|
20 |
"""
|
21 |
|
22 |
-
# import torch
|
23 |
-
# import numpy as np
|
24 |
-
|
25 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
-
|
27 |
-
# class EndpointHandler():
|
28 |
-
# def __init__(self, path=""):
|
29 |
-
|
30 |
-
# # Load the models and tokenizer
|
31 |
-
# self.model = AutoModelForCausalLM.from_pretrained(
|
32 |
-
# "hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit",
|
33 |
-
# torch_dtype=torch.bfloat16
|
34 |
-
# )
|
35 |
-
# self.tokenizer = AutoTokenizer.from_pretrained("hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit")
|
36 |
-
|
37 |
-
# # Move to devices
|
38 |
-
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
-
# self.model.to(self.device)
|
40 |
-
|
41 |
-
# # Special tokens
|
42 |
-
# self.start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
43 |
-
# self.end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
44 |
-
# self.padding_token = 128263
|
45 |
-
# self.start_audio_token = 128257 # Start of Audio token
|
46 |
-
# self.end_audio_token = 128258 # End of Audio token
|
47 |
-
|
48 |
-
|
49 |
-
# def __call__(self, data):
|
50 |
-
# """
|
51 |
-
# Main entry point for the handler
|
52 |
-
# """
|
53 |
-
|
54 |
-
# # Preprocess input
|
55 |
-
# if isinstance(data, dict) and "inputs" in data:
|
56 |
-
# text = data["inputs"]
|
57 |
-
# parameters = data.get("parameters", {})
|
58 |
-
# else:
|
59 |
-
# text = data
|
60 |
-
# parameters = {}
|
61 |
-
|
62 |
-
# # Extract parameters from request
|
63 |
-
# voice = parameters.get("voice", "tara")
|
64 |
-
# temperature = float(parameters.get("temperature", 0.6))
|
65 |
-
# top_p = float(parameters.get("top_p", 0.95))
|
66 |
-
# max_new_tokens = int(parameters.get("max_new_tokens", 1200))
|
67 |
-
# repetition_penalty = float(parameters.get("repetition_penalty", 1.1))
|
68 |
-
|
69 |
-
# # Format prompt with voice
|
70 |
-
# prompt = f"{voice}: {text}"
|
71 |
-
|
72 |
-
# # Tokenize
|
73 |
-
# input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
|
74 |
-
|
75 |
-
# # Add special tokens
|
76 |
-
# modified_input_ids = torch.cat([self.start_token, input_ids, self.end_tokens], dim=1)
|
77 |
-
|
78 |
-
# # No need for padding as we're processing a single sequence
|
79 |
-
# input_ids = modified_input_ids.to(self.device)
|
80 |
-
# attention_mask = torch.ones_like(input_ids)
|
81 |
-
|
82 |
-
# # Forward pass through the model
|
83 |
-
# generated_ids = self.model.generate(
|
84 |
-
# input_ids=input_ids,
|
85 |
-
# attention_mask=attention_mask,
|
86 |
-
# max_new_tokens=max_new_tokens,
|
87 |
-
# do_sample=True,
|
88 |
-
# temperature=temperature,
|
89 |
-
# top_p=top_p,
|
90 |
-
# repetition_penalty=repetition_penalty,
|
91 |
-
# num_return_sequences=1,
|
92 |
-
# eos_token_id=self.end_audio_token,
|
93 |
-
# )
|
94 |
-
|
95 |
-
# return generated_ids
|
96 |
-
# Code from your original handler, but with some fixes
|
97 |
import os
|
98 |
import torch
|
99 |
import numpy as np
|
@@ -305,7 +230,7 @@ class EndpointHandler:
|
|
305 |
logger.info(f"Audio encoded as base64, length: {len(audio_b64)}")
|
306 |
|
307 |
return {
|
308 |
-
"
|
309 |
"audio_b64": audio_b64,
|
310 |
"sample_rate": 24000
|
311 |
}
|
|
|
19 |
Create a `handler.py` file with your custom handler code:
|
20 |
"""
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
import os
|
23 |
import torch
|
24 |
import numpy as np
|
|
|
230 |
logger.info(f"Audio encoded as base64, length: {len(audio_b64)}")
|
231 |
|
232 |
return {
|
233 |
+
"audio_sample": audio_sample,
|
234 |
"audio_b64": audio_b64,
|
235 |
"sample_rate": 24000
|
236 |
}
|