huihui-ai's picture
Update README.md
2dd9fd6 verified
metadata
language:
  - en
  - fr
  - de
  - es
  - pt
  - it
  - ja
  - ko
  - ru
  - zh
  - ar
  - fa
  - id
  - ms
  - ne
  - pl
  - ro
  - sr
  - sv
  - tr
  - uk
  - vi
  - hi
  - bn
license: apache-2.0
library_name: vllm
inference: false
base_model:
  - mistralai/Devstral-Small-2505
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
pipeline_tag: text2text-generation
tags:
  - chat
  - abliterated
  - uncensored
extra_gated_prompt: >-
  **Usage Warnings**


  “**Risk of Sensitive or Controversial Outputs**“: This model’s safety
  filtering has been significantly reduced, potentially generating sensitive,
  controversial, or inappropriate content. Users should exercise caution and
  rigorously review generated outputs.

  “**Not Suitable for All Audiences**:“ Due to limited content filtering, the
  model’s outputs may be inappropriate for public settings, underage users, or
  applications requiring high security.

  “**Legal and Ethical Responsibilities**“: Users must ensure their usage
  complies with local laws and ethical standards. Generated content may carry
  legal or ethical risks, and users are solely responsible for any consequences.

  “**Research and Experimental Use**“: It is recommended to use this model for
  research, testing, or controlled environments, avoiding direct use in
  production or public-facing commercial applications.

  “**Monitoring and Review Recommendations**“: Users are strongly advised to
  monitor model outputs in real-time and conduct manual reviews when necessary
  to prevent the dissemination of inappropriate content.

  “**No Default Safety Guarantees**“: Unlike standard models, this model has not
  undergone rigorous safety optimization. huihui.ai bears no responsibility for
  any consequences arising from its use.

huihui-ai/Devstral-Small-2505-abliterated

This is an uncensored version of mistralai/Devstral-Small-2505 created with abliteration (see remove-refusals-with-transformers to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.

ollama

You can use huihui_ai/devstral-abliterated directly,

ollama run huihui_ai/devstral-abliterated

Usage

You can use this model in your applications by loading it with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal

cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)

print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")

# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/Devstral-Small-2505-abliterated"
print(f"Load Model {NEW_MODEL_ID} ... ")

tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
#if tokenizer.pad_token is None:
#    tokenizer.pad_token = tokenizer.eos_token
#tokenizer.pad_token_id = tokenizer.eos_token_id


quant_config_4 = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    llm_int14_enable_fp32_cpu_offload=True,
)

model = AutoModelForCausalLM.from_pretrained(
    NEW_MODEL_ID,
    device_map="auto",
    trust_remote_code=True,
    quantization_config=quant_config_4,
    torch_dtype=torch.bfloat16
)

def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = f"{repo_id}/{filename}"
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt

SYSTEM_PROMPT = load_system_prompt(NEW_MODEL_ID, "SYSTEM_PROMPT.txt")


initial_messages = [{"role": "system", "content": SYSTEM_PROMPT}]
messages = initial_messages.copy()
skip_prompt=True
skip_special_tokens=True

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.generated_text = ""
        self.stop_flag = False

    def on_finalized_text(self, text: str, stream_end: bool = False):
        self.generated_text += text
        print(text, end="", flush=True)
        if self.stop_flag:
            raise StopIteration

    def stop_generation(self):
        self.stop_flag = True

def generate_stream(model, tokenizer, messages, skip_prompt, skip_special_tokens, max_new_tokens):
    input_ids = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    attention_mask = torch.ones_like(input_ids, dtype=torch.long)
    tokens = input_ids.to(model.device) 
    attention_mask = attention_mask.to(model.device)

    streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)

    def signal_handler(sig, frame):
        streamer.stop_generation()
        print("\n[Generation stopped by user with Ctrl+C]")

    signal.signal(signal.SIGINT, signal_handler)
    
    print("Response: ", end="", flush=True)
    try:
        generated_ids = model.generate(
            tokens,
            attention_mask=attention_mask,
            use_cache=False,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            streamer=streamer
        )
        del generated_ids
    except StopIteration:
        print("\n[Stopped by user]")

    del input_ids, attention_mask
    torch.cuda.empty_cache()
    signal.signal(signal.SIGINT, signal.SIG_DFL)

    return streamer.generated_text, streamer.stop_flag

while True:
    user_input = input("User: ").strip()
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break
    if user_input.lower() == "/clear":
        messages = initial_messages.copy()
        print("Chat history cleared. Starting a new conversation.")
        continue
    if user_input.lower() == "/skip_prompt":
        if skip_prompt:
            skip_prompt = False
            print("skip_prompt = False.")
        else:
            skip_prompt = True
            print("skip_prompt = True.")        
        continue
    if user_input.lower() == "/skip_special_tokens":
        if skip_special_tokens:
            skip_special_tokens = False
            print("skip_special_tokens = False.")
        else:
            skip_special_tokens = True
            print("skip_special_tokens = True.")        
        continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue
    messages.append({"role": "user", "content": user_input})
    response, stop_flag = generate_stream(model, tokenizer, messages, skip_prompt, skip_special_tokens, 8192)
    print("", flush=True)
    if stop_flag:
        continue
    messages.append({"role": "assistant", "content": response})

Donation

If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.

Your donation helps us continue our further development and improvement, a cup of coffee can do it.
  • bitcoin(BTC):
  bc1qqnkhuchxw0zqjh2ku3lu14hq145hc6gy1414uk70ge