lr0.0001_bs16_0519_1844

This model is a fine-tuned version of nvidia/mit-b0 on the greenkwd/upwellingdetection_SST dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1755
  • Mean Iou: 0.5363
  • Mean Accuracy: 0.8678
  • Overall Accuracy: 0.9055
  • Accuracy Land: nan
  • Accuracy Upwelling: 0.9625
  • Accuracy Not Upwelling: 0.7731
  • Iou Land: 0.0
  • Iou Upwelling: 0.8931
  • Iou Not Upwelling: 0.7159
  • Dice Macro: 0.9156
  • Dice Micro: 0.9409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Land Accuracy Upwelling Accuracy Not Upwelling Iou Land Iou Upwelling Iou Not Upwelling Dice Macro Dice Micro
1.0767 0.8 20 1.0897 0.1542 0.2922 0.2833 nan 0.2698 0.3145 0.0 0.2594 0.2032 0.4326 0.4993
0.8329 1.6 40 0.8808 0.3310 0.6229 0.7352 nan 0.9050 0.3408 0.0 0.7083 0.2845 0.6762 0.7598
0.6151 2.4 60 0.5929 0.3649 0.6626 0.7741 nan 0.9425 0.3827 0.0 0.7479 0.3467 0.7374 0.8229
0.4885 3.2 80 0.4468 0.4048 0.7183 0.8024 nan 0.9295 0.5072 0.0 0.7737 0.4407 0.7906 0.8565
0.4143 4.0 100 0.3858 0.4490 0.7850 0.8224 nan 0.8789 0.6911 0.0 0.7932 0.5539 0.8415 0.8837
0.3887 4.8 120 0.3404 0.4770 0.8074 0.8604 nan 0.9405 0.6743 0.0 0.8365 0.5943 0.8629 0.9042
0.3883 5.6 140 0.3227 0.4651 0.7818 0.8551 nan 0.9659 0.5977 0.0 0.8399 0.5552 0.8560 0.9048
0.3399 6.4 160 0.3085 0.4864 0.8117 0.8689 nan 0.9554 0.6680 0.0 0.8524 0.6069 0.8738 0.9139
0.3222 7.2 180 0.2960 0.4991 0.8489 0.8725 nan 0.9081 0.7897 0.0 0.8455 0.6519 0.8854 0.9162
0.3004 8.0 200 0.2766 0.5100 0.8492 0.8864 nan 0.9425 0.7559 0.0 0.8623 0.6677 0.8914 0.9227
0.2923 8.8 220 0.2705 0.4866 0.8061 0.8739 nan 0.9764 0.6357 0.0 0.8558 0.6039 0.8764 0.9183
0.3322 9.6 240 0.2498 0.5111 0.8532 0.8824 nan 0.9265 0.7800 0.0 0.8652 0.6681 0.8976 0.9268
0.2637 10.4 260 0.2543 0.5118 0.8506 0.8818 nan 0.9289 0.7723 0.0 0.8693 0.6660 0.8983 0.9276
0.311 11.2 280 0.2464 0.4967 0.8166 0.8759 nan 0.9654 0.6678 0.0 0.8686 0.6214 0.8873 0.9247
0.306 12.0 300 0.2564 0.4747 0.8084 0.8370 nan 0.8802 0.7365 0.0 0.8400 0.5842 0.8695 0.9057
0.3015 12.8 320 0.2357 0.5030 0.8268 0.8869 nan 0.9777 0.6758 0.0 0.8652 0.6438 0.8873 0.9242
0.2985 13.6 340 0.2304 0.5180 0.8549 0.8879 nan 0.9378 0.7720 0.0 0.8756 0.6784 0.9031 0.9314
0.2767 14.4 360 0.2629 0.4760 0.8013 0.8677 nan 0.9680 0.6345 0.0 0.8372 0.5908 0.8557 0.9005
0.2844 15.2 380 0.2568 0.4779 0.7979 0.8715 nan 0.9827 0.6132 0.0 0.8440 0.5898 0.8605 0.9067
0.3176 16.0 400 0.2520 0.4860 0.8099 0.8757 nan 0.9750 0.6449 0.0 0.8480 0.6100 0.8656 0.9086
0.25 16.8 420 0.2347 0.4974 0.8230 0.8829 nan 0.9734 0.6726 0.0 0.8585 0.6339 0.8846 0.9221
0.2454 17.6 440 0.2346 0.4617 0.7711 0.8570 nan 0.9869 0.5554 0.0 0.8442 0.5410 0.8628 0.9145
0.2631 18.4 460 0.2196 0.4960 0.8192 0.8679 nan 0.9415 0.6968 0.0 0.8694 0.6186 0.8869 0.9225
0.2994 19.2 480 0.2176 0.5328 0.8791 0.9040 nan 0.9415 0.8167 0.0 0.8780 0.7205 0.9081 0.9333
0.2413 20.0 500 0.2250 0.4867 0.8032 0.8695 nan 0.9697 0.6368 0.0 0.8602 0.5998 0.8799 0.9209
0.2591 20.8 520 0.2358 0.4633 0.7715 0.8520 nan 0.9736 0.5693 0.0 0.8500 0.5400 0.8628 0.9131
0.2416 21.6 540 0.2255 0.4960 0.8126 0.8731 nan 0.9645 0.6608 0.0 0.8695 0.6186 0.8870 0.9245
0.2587 22.4 560 0.2337 0.5028 0.8335 0.8856 nan 0.9642 0.7029 0.0 0.8585 0.6499 0.8842 0.9200
0.2565 23.2 580 0.2204 0.5088 0.8514 0.8783 nan 0.9191 0.7836 0.0 0.8624 0.6641 0.8974 0.9263
0.2457 24.0 600 0.2147 0.5111 0.8427 0.8855 nan 0.9501 0.7353 0.0 0.8711 0.6621 0.8992 0.9302
0.245 24.8 620 0.2229 0.4848 0.8016 0.8741 nan 0.9837 0.6194 0.0 0.8560 0.5983 0.8798 0.9223
0.2615 25.6 640 0.2461 0.4785 0.8043 0.8680 nan 0.9642 0.6443 0.0 0.8395 0.5958 0.8673 0.9102
0.2555 26.4 660 0.2112 0.5254 0.8631 0.9000 nan 0.9556 0.7706 0.0 0.8755 0.7005 0.9013 0.9300
0.2515 27.2 680 0.2216 0.4729 0.7804 0.8546 nan 0.9669 0.5939 0.0 0.8614 0.5574 0.8686 0.9153
0.245 28.0 700 0.2174 0.5126 0.8428 0.8919 nan 0.9661 0.7195 0.0 0.8688 0.6689 0.8950 0.9276
0.2598 28.8 720 0.2073 0.5114 0.8465 0.8814 nan 0.9341 0.7590 0.0 0.8709 0.6634 0.8996 0.9292
0.2785 29.6 740 0.2287 0.4689 0.7821 0.8399 nan 0.9272 0.6370 0.0 0.8471 0.5596 0.8644 0.9075
0.258 30.4 760 0.2406 0.4617 0.7761 0.8604 nan 0.9878 0.5645 0.0 0.8349 0.5502 0.8527 0.9052
0.2635 31.2 780 0.2163 0.5149 0.8665 0.8872 nan 0.9186 0.8144 0.0 0.8574 0.6874 0.8979 0.9252
0.2929 32.0 800 0.2160 0.4825 0.7950 0.8577 nan 0.9525 0.6376 0.0 0.8636 0.5839 0.8759 0.9173
0.2228 32.8 820 0.2137 0.4972 0.8123 0.8704 nan 0.9582 0.6663 0.0 0.8744 0.6172 0.8869 0.9239
0.2695 33.6 840 0.2031 0.5196 0.8525 0.8914 nan 0.9501 0.7548 0.0 0.8789 0.6799 0.9051 0.9338
0.2341 34.4 860 0.2128 0.5023 0.8243 0.8836 nan 0.9733 0.6752 0.0 0.8679 0.6391 0.8927 0.9285
0.2409 35.2 880 0.2230 0.4762 0.8062 0.8444 nan 0.9021 0.7103 0.0 0.8396 0.5890 0.8725 0.9097
0.3406 36.0 900 0.2113 0.5042 0.8423 0.8730 nan 0.9193 0.7653 0.0 0.8617 0.6510 0.8948 0.9250
0.2631 36.8 920 0.2131 0.5020 0.8260 0.8842 nan 0.9722 0.6798 0.0 0.8643 0.6417 0.8898 0.9259
0.2785 37.6 940 0.2164 0.4900 0.8384 0.8587 nan 0.8894 0.7873 0.0 0.8356 0.6344 0.8848 0.9158
0.2398 38.4 960 0.2228 0.4711 0.7815 0.8520 nan 0.9585 0.6046 0.0 0.8550 0.5584 0.8682 0.9141
0.2301 39.2 980 0.2086 0.5192 0.8543 0.8973 nan 0.9623 0.7463 0.0 0.8705 0.6870 0.8954 0.9263
0.2785 40.0 1000 0.2152 0.5016 0.8277 0.8856 nan 0.9730 0.6824 0.0 0.8610 0.6438 0.8876 0.9240
0.2151 40.8 1020 0.1982 0.5171 0.8453 0.8935 nan 0.9665 0.7241 0.0 0.8759 0.6755 0.9025 0.9332
0.2154 41.6 1040 0.2038 0.5045 0.8361 0.8779 nan 0.9412 0.7309 0.0 0.8644 0.6491 0.8951 0.9270
0.2456 42.4 1060 0.2037 0.5180 0.8462 0.8954 nan 0.9698 0.7225 0.0 0.8764 0.6775 0.9027 0.9335
0.224 43.2 1080 0.2028 0.5123 0.8421 0.8911 nan 0.9652 0.7191 0.0 0.8695 0.6673 0.8993 0.9310
0.1998 44.0 1100 0.2064 0.5007 0.8202 0.8736 nan 0.9542 0.6862 0.0 0.8711 0.6311 0.8908 0.9256
0.2385 44.8 1120 0.2041 0.5048 0.8264 0.8779 nan 0.9558 0.6971 0.0 0.8752 0.6392 0.8942 0.9280
0.2756 45.6 1140 0.1974 0.5092 0.8329 0.8842 nan 0.9618 0.7039 0.0 0.8745 0.6532 0.8981 0.9307
0.2633 46.4 1160 0.2093 0.5000 0.8205 0.8796 nan 0.9690 0.6719 0.0 0.8657 0.6342 0.8900 0.9262
0.2228 47.2 1180 0.2020 0.5294 0.8770 0.8993 nan 0.9330 0.8211 0.0 0.8752 0.7129 0.9099 0.9347
0.2872 48.0 1200 0.2062 0.5195 0.8533 0.8968 nan 0.9624 0.7443 0.0 0.8725 0.6860 0.9010 0.9310
0.2825 48.8 1220 0.2029 0.5010 0.8263 0.8746 nan 0.9476 0.7050 0.0 0.8653 0.6378 0.8914 0.9252
0.2834 49.6 1240 0.2036 0.5027 0.8279 0.8811 nan 0.9614 0.6943 0.0 0.8646 0.6434 0.8925 0.9270
0.2133 50.4 1260 0.2026 0.5012 0.8286 0.8747 nan 0.9443 0.7129 0.0 0.8644 0.6392 0.8924 0.9257
0.3216 51.2 1280 0.1995 0.5016 0.8281 0.8724 nan 0.9392 0.7170 0.0 0.8664 0.6383 0.8918 0.9248
0.2363 52.0 1300 0.2124 0.4931 0.8134 0.8757 nan 0.9699 0.6570 0.0 0.8596 0.6199 0.8854 0.9238
0.2252 52.8 1320 0.2090 0.5106 0.8486 0.8888 nan 0.9497 0.7475 0.0 0.8612 0.6705 0.8955 0.9264
0.2469 53.6 1340 0.2095 0.5055 0.8336 0.8880 nan 0.9702 0.6970 0.0 0.8629 0.6536 0.8886 0.9236
0.2603 54.4 1360 0.1962 0.5208 0.8544 0.8952 nan 0.9568 0.7520 0.0 0.8750 0.6874 0.9042 0.9332
0.2463 55.2 1380 0.1993 0.5008 0.8397 0.8684 nan 0.9119 0.7675 0.0 0.8558 0.6467 0.8919 0.9224
0.2423 56.0 1400 0.2084 0.4959 0.8173 0.8817 nan 0.9791 0.6555 0.0 0.8601 0.6276 0.8859 0.9244
0.2718 56.8 1420 0.1986 0.5201 0.8512 0.8956 nan 0.9628 0.7396 0.0 0.8755 0.6849 0.9018 0.9318
0.2315 57.6 1440 0.1987 0.5104 0.8367 0.8915 nan 0.9743 0.6990 0.0 0.8693 0.6618 0.8949 0.9287
0.2303 58.4 1460 0.1963 0.5038 0.8331 0.8769 nan 0.9431 0.7232 0.0 0.8628 0.6487 0.8930 0.9254
0.2283 59.2 1480 0.2002 0.5065 0.8310 0.8845 nan 0.9654 0.6966 0.0 0.8698 0.6498 0.8956 0.9293
0.2131 60.0 1500 0.2003 0.4833 0.8058 0.8560 nan 0.9319 0.6798 0.0 0.8502 0.5998 0.8781 0.9159
0.2131 60.8 1520 0.1922 0.5047 0.8282 0.8774 nan 0.9518 0.7046 0.0 0.8718 0.6422 0.8943 0.9275
0.2232 61.6 1540 0.1890 0.5022 0.8251 0.8778 nan 0.9575 0.6926 0.0 0.8681 0.6385 0.8920 0.9265
0.2984 62.4 1560 0.1902 0.5128 0.8412 0.8893 nan 0.9618 0.7206 0.0 0.8715 0.6668 0.8992 0.9308
0.2443 63.2 1580 0.1959 0.5127 0.8385 0.8896 nan 0.9668 0.7102 0.0 0.8743 0.6637 0.9003 0.9323
0.2432 64.0 1600 0.1885 0.5081 0.8329 0.8797 nan 0.9504 0.7154 0.0 0.8723 0.6520 0.8965 0.9285
0.2299 64.8 1620 0.1925 0.5240 0.8567 0.9010 nan 0.9679 0.7454 0.0 0.8771 0.6950 0.9024 0.9320
0.2139 65.6 1640 0.1978 0.5060 0.8332 0.8771 nan 0.9436 0.7229 0.0 0.8725 0.6455 0.8953 0.9275
0.2197 66.4 1660 0.1851 0.5259 0.8600 0.8975 nan 0.9543 0.7658 0.0 0.8806 0.6970 0.9079 0.9353
0.2402 67.2 1680 0.1803 0.5280 0.8606 0.9016 nan 0.9635 0.7577 0.0 0.8826 0.7016 0.9091 0.9367
0.2252 68.0 1700 0.1895 0.5155 0.8424 0.8942 nan 0.9725 0.7123 0.0 0.8746 0.6719 0.9002 0.9321
0.2216 68.8 1720 0.1863 0.5135 0.8488 0.8823 nan 0.9331 0.7645 0.0 0.8709 0.6697 0.9011 0.9299
0.2667 69.6 1740 0.1836 0.5263 0.8559 0.8975 nan 0.9605 0.7513 0.0 0.8853 0.6937 0.9092 0.9369
0.2432 70.4 1760 0.1840 0.5274 0.8563 0.9002 nan 0.9666 0.7459 0.0 0.8856 0.6965 0.9096 0.9375
0.2606 71.2 1780 0.1809 0.5290 0.8588 0.9008 nan 0.9641 0.7535 0.0 0.8869 0.6999 0.9111 0.9384
0.2306 72.0 1800 0.1864 0.5073 0.8318 0.8773 nan 0.9460 0.7176 0.0 0.8751 0.6469 0.8953 0.9275
0.2273 72.8 1820 0.1843 0.5057 0.8310 0.8753 nan 0.9422 0.7198 0.0 0.8730 0.6441 0.8943 0.9266
0.2476 73.6 1840 0.1841 0.5224 0.8581 0.8907 nan 0.9400 0.7763 0.0 0.8786 0.6887 0.9069 0.9339
0.2497 74.4 1860 0.1771 0.5231 0.8544 0.8956 nan 0.9579 0.7508 0.0 0.8809 0.6885 0.9074 0.9356
0.2067 75.2 1880 0.1901 0.4959 0.8193 0.8657 nan 0.9358 0.7028 0.0 0.8649 0.6228 0.8869 0.9215
0.2265 76.0 1900 0.1807 0.5142 0.8410 0.8838 nan 0.9485 0.7335 0.0 0.8795 0.6630 0.9009 0.9311
0.2208 76.8 1920 0.1809 0.5377 0.8750 0.9078 nan 0.9574 0.7925 0.0 0.8892 0.7239 0.9154 0.9400
0.2382 77.6 1940 0.1847 0.5317 0.8641 0.9063 nan 0.9700 0.7581 0.0 0.8848 0.7103 0.9079 0.9357
0.2228 78.4 1960 0.1793 0.5329 0.8652 0.9055 nan 0.9666 0.7637 0.0 0.8870 0.7118 0.9115 0.9382
0.2175 79.2 1980 0.1885 0.5019 0.8226 0.8771 nan 0.9593 0.6860 0.0 0.8707 0.6349 0.8925 0.9273
0.2571 80.0 2000 0.1814 0.5280 0.8581 0.8972 nan 0.9562 0.7600 0.0 0.8870 0.6969 0.9105 0.9374
0.2099 80.8 2020 0.1805 0.5287 0.8592 0.9024 nan 0.9676 0.7507 0.0 0.8852 0.7009 0.9104 0.9381
0.2782 81.6 2040 0.1817 0.5246 0.8561 0.8915 nan 0.9451 0.7671 0.0 0.8848 0.6889 0.9078 0.9348
0.2216 82.4 2060 0.1796 0.5229 0.8559 0.8890 nan 0.9391 0.7727 0.0 0.8828 0.6858 0.9069 0.9339
0.2124 83.2 2080 0.1782 0.5331 0.8661 0.9007 nan 0.9530 0.7792 0.0 0.8910 0.7084 0.9141 0.9394
0.2405 84.0 2100 0.1816 0.5204 0.8454 0.8913 nan 0.9607 0.7300 0.0 0.8841 0.6772 0.9051 0.9345
0.2015 84.8 2120 0.1795 0.5258 0.8529 0.8965 nan 0.9623 0.7436 0.0 0.8874 0.6902 0.9090 0.9370
0.2171 85.6 2140 0.1761 0.5374 0.8719 0.9066 nan 0.9591 0.7847 0.0 0.8920 0.7203 0.9161 0.9409
0.2519 86.4 2160 0.1784 0.5341 0.8656 0.9058 nan 0.9665 0.7647 0.0 0.8898 0.7123 0.9134 0.9397
0.2269 87.2 2180 0.1841 0.5166 0.8412 0.8915 nan 0.9675 0.7150 0.0 0.8799 0.6700 0.9026 0.9337
0.236 88.0 2200 0.1765 0.5341 0.8647 0.9044 nan 0.9643 0.7651 0.0 0.8916 0.7107 0.9142 0.9402
0.2295 88.8 2220 0.1803 0.5212 0.8488 0.8923 nan 0.9581 0.7395 0.0 0.8828 0.6807 0.9058 0.9348
0.2201 89.6 2240 0.1831 0.5217 0.8478 0.8954 nan 0.9672 0.7283 0.0 0.8835 0.6816 0.9064 0.9360
0.2367 90.4 2260 0.1825 0.5292 0.8616 0.9021 nan 0.9632 0.7601 0.0 0.8843 0.7034 0.9098 0.9371
0.2274 91.2 2280 0.1818 0.5229 0.8503 0.8942 nan 0.9606 0.7400 0.0 0.8850 0.6836 0.9073 0.9360
0.228 92.0 2300 0.1794 0.5319 0.8604 0.9036 nan 0.9689 0.7520 0.0 0.8904 0.7053 0.9130 0.9399
0.2333 92.8 2320 0.1811 0.5207 0.8481 0.8889 nan 0.9506 0.7457 0.0 0.8846 0.6774 0.9052 0.9338
0.2323 93.6 2340 0.1800 0.5333 0.8630 0.9052 nan 0.9690 0.7570 0.0 0.8904 0.7096 0.9134 0.9400
0.2387 94.4 2360 0.1779 0.5320 0.8614 0.9014 nan 0.9619 0.7608 0.0 0.8917 0.7043 0.9132 0.9396
0.2345 95.2 2380 0.1803 0.5233 0.8505 0.8929 nan 0.9569 0.7441 0.0 0.8859 0.6841 0.9072 0.9355
0.2076 96.0 2400 0.1768 0.5368 0.8680 0.9069 nan 0.9656 0.7704 0.0 0.8929 0.7175 0.9155 0.9410
0.2541 96.8 2420 0.1764 0.5347 0.8654 0.9045 nan 0.9636 0.7671 0.0 0.8917 0.7125 0.9143 0.9401
0.2084 97.6 2440 0.1772 0.5322 0.8621 0.9015 nan 0.9611 0.7630 0.0 0.8909 0.7058 0.9131 0.9393
0.2323 98.4 2460 0.1766 0.5336 0.8641 0.9028 nan 0.9612 0.7669 0.0 0.8917 0.7091 0.9140 0.9399
0.2347 99.2 2480 0.1756 0.5359 0.8673 0.9047 nan 0.9614 0.7732 0.0 0.8931 0.7146 0.9155 0.9408
0.1893 100.0 2500 0.1755 0.5363 0.8678 0.9055 nan 0.9625 0.7731 0.0 0.8931 0.7159 0.9156 0.9409

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for greenkwd/lr0.0001_bs16_0519_1844

Base model

nvidia/mit-b0
Finetuned
(454)
this model