metadata
tags:
- pytorch
- vae
- image-generation
- cc3m
license: mit
datasets:
- pixparse/cc3m-wds
library_name: custom
model-index:
- name: vae-256px-32z
results:
- task:
type: image-generation
dataset:
name: google-research-datasets/conceptual-captions
type: image
metrics:
- type: FID
value: 2.557451009750366
- type: LPIPS
value: 0.05679609028979091
- type: ID-similarity
value: 0.000406394264995487
UNet-Style VAE for 256x256 Image Reconstruction
This model is a UNet-style Variational Autoencoder (VAE) trained on the CC3M dataset for high-quality image reconstruction and generation. It integrates adversarial, perceptual, and identity-preserving loss terms to improve semantic and visual fidelity.
Architecture
- Encoder/Decoder: Multi-scale UNet architecture
- Latent Space: 32-channel latent bottleneck with reparameterization (mu, logvar)
- Losses:
- L1 reconstruction loss
- KL divergence with annealing
- LPIPS perceptual loss (VGG backbone)
- Identity loss via MoCo-v2 embeddings
- Adversarial loss via Patch Discriminator w/ Spectral Norm
Reconstructions
Training Config
Hyperparameter | Value |
---|---|
Dataset | CC3M (850k images) |
Image Resolution | 256 x 256 |
Batch Size | 16 |
Optimizer | AdamW |
Learning Rate | 5e-5 |
Precision | bf16 (mixed precision) |
Total Steps | 210,000 |
GAN Start Step | 50,000 |
KL Annealing | Yes (10% of training) |
Augmentations | Crop, flip, jitter, blur, rotation |
Trained using a cosine learning rate schedule with gradient clipping and automatic mixed precision (torch.cuda.amp
)