artificial-styletts2 / msinference.py
Dionyssos's picture
oscillate vits duration
c7362aa
from Modules.vits.models import VitsModel, VitsTokenizer
import sys
import tempfile
import re
import os
from collections import OrderedDict
from Modules.hifigan import Decoder
from Utils.PLBERT.util import load_plbert
import phonemizer
import torch
from cached_path import cached_path
import nltk
import audresample
nltk.download('punkt', download_dir='./') # comment if downloaded once
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
import numpy as np
import yaml
import librosa
from models import ProsodyPredictor, TextEncoder, StyleEncoder, MelSpec
from nltk.tokenize import word_tokenize
from Utils.text_utils import transliterate_number
import textwrap
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
mel_spec = MelSpec().to(device)
def compute_style(path):
x, sr = librosa.load(path, sr=24000)
x, _ = librosa.effects.trim(x, top_db=30)
if sr != 24000:
x = librosa.resample(x, sr, 24000)
with torch.no_grad():
x = torch.from_numpy(x[None, :]).to(device=device, dtype=torch.float)
mel_tensor = (torch.log(1e-5 + mel_spec(x)) + 4) / 4
#mel_tensor = preprocess(audio).to(device)
ref_s = style_encoder(mel_tensor)
ref_p = predictor_encoder(mel_tensor) # [bs, 11, 1, 128]
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256]
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11]
return s # [1, 128, 11]
global_phonemizer = phonemizer.backend.EspeakBackend(
language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
args = yaml.safe_load(open(str('Utils/config.yml')))
ASR_config = args['ASR_config']
bert = load_plbert(args['PLBERT_dir']).eval().to(device)
decoder = Decoder(dim_in=512,
style_dim=128,
dim_out=80, # n_mels
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]).eval().to(device)
text_encoder = TextEncoder(channels=512,
kernel_size=5,
depth=3, # args['model_params']['n_layer'],
n_symbols=178, # args['model_params']['n_token']
).eval().to(device)
predictor = ProsodyPredictor(style_dim=128,
d_hid=512,
nlayers=3, # OFFICIAL config.nlayers=5;
max_dur=50).eval().to(device)
style_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # acoustic style encoder
predictor_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # prosodic style encoder
bert_encoder = torch.nn.Linear(bert.config.hidden_size, 512).eval().to(device)
# params_whole = torch.load('freevc2/yl4579_styletts2.pth' map_location='cpu')
params_whole = torch.load(str(cached_path(
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu', weights_only=True)
params = params_whole['net']
#params['decoder'].pop('module.generator.m_source.l_linear.weight')
#params['decoder'].pop('module.generator.m_source.l_linear.bias') # SourceHNSf
def _del_prefix(d):
# del ".module"
out = OrderedDict()
for k, v in d.items():
out[k[7:]] = v
return out
bert.load_state_dict(_del_prefix(params['bert']), strict=True)
bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
# XTRA non-ckpt LSTMs nlayers add slowiness to voice
predictor.load_state_dict(_del_prefix(params['predictor']), strict=True)
decoder.load_state_dict(_del_prefix(params['decoder']), strict=True)
text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
predictor_encoder.load_state_dict(_del_prefix(
params['predictor_encoder']), strict=True)
style_encoder.load_state_dict(_del_prefix(
params['style_encoder']), strict=True)
def inference(text,
ref_s):
# text = transliterate_number(text, lang='en').strip() # Transliteration only used for foreign() # perhaps add xtra . after ? ;
ps = global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
hidden_states = text_encoder(tokens)
bert_dur = bert(tokens, attention_mask=torch.ones_like(tokens))
d_en = bert_encoder(bert_dur).transpose(-1, -2)
aln_trg, F0_pred, N_pred = predictor(d_en=d_en, s=ref_s[:, 128:, :])
asr = torch.bmm(aln_trg, hidden_states)
asr = asr.transpose(1, 2)
asr = torch.cat([asr[:, :, 0:1], asr[:, :, 0:-1]], 2)
x = decoder(asr=asr, # [1, 512, 201]
F0_curve=F0_pred, # [1, 1, 402] 2x time
N=N_pred, # [1, 1, 402] 2x time
s=ref_s[:, :128, :]) # [1, 256, 1]
x = x.cpu().numpy()[0, 0, :]
x[-400:] = 0 # noisy pulse produced for unterminated sentences, in absence of punctuation, (not sure if same behaviour for all voices)
# StyleTTS2 is 24kHz -> Resample to 16kHz as is AudioGen / MMS
if x.shape[0] > 10:
x = audresample.resample(signal=x.astype(np.float32),
original_rate=24000,
target_rate=16000)[0, :] # audresample reshapes (64,) -> (1,64) | Volume Normalisation applies in api.py:tts_multi_sentence()
else:
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
x = np.zeros(0)
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# ==============================================================================================
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
# ==============================================================================================
PHONEME_MAP = {
'služ': 'sloooozz', # 'službeno'
'suver': 'siuveeerra', # 'suverena'
'država': 'dirrezav', # 'država'
'iči': 'ici', # 'Graniči'
's ': 'se', # a s with space
'q': 'ku',
'w': 'aou',
'z': 's',
"š": "s",
'th': 'ta',
'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
"ž": "z",
# "c": "č"
}
def fix_phones(text):
for src, target in PHONEME_MAP.items():
text = text.replace(src, target)
# text = re.sub(r'\s+', '` `', text) #.strip() #.lower()
# text = re.sub(r'\s+', '_ _', text) # almost proper pausing
return text.replace(',', '_ _').replace('.', '_ _')
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
def foreign(text=None, # split sentences here so we can prepend a txt for german to each sentence to
# fall on the male voice (Sink attn)
lang='romanian',
speed=None):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv
lang = lang.lower()
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
if has_cyrillic(text): # check 0-th sentence if is cyrillic
# romani carpathian (also has latin / cyrillic Vlax)
lang_code = 'rmc-script_cyrillic'
else:
# romani carpathian (has also Vlax)
lang_code = 'rmc-script_latin'
elif 'rom' in lang:
lang_code = 'ron'
elif 'ger' in lang or 'deu' in lang or 'allem' in lang:
lang_code = 'deu'
elif 'alban' in lang:
lang_code = 'sqi'
else:
lang_code = lang.split()[0].strip()
# load VITS
# net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
# tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
total_audio = []
# Split long sentences if deu to control voice switch - for other languages let text no-split
if not isinstance(text, list):
# Split Very long sentences
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 440, break_long_words=0)]
for _t in text:
_t = _t.lower()
# NUMBERS
try:
_t = transliterate_number(_t, lang=lang_code)
except NotImplementedError:
print('Transliterate Numbers - NotImplemented for {lang_code=}', _t,'\n____________________________________________')
# PRONOUNC.
if lang_code == 'rmc-script_latin':
_t = fix_phones(_t) # phonemes replace per language
elif lang_code == 'ron':
# tone
_t = _t.replace("ţ", "ț"
).replace('ț', 'ts').replace('î', 'u').replace('â', 'a').replace('ş', 's')
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
# input_ids / attention_mask
inputs = tokenizer(_t, return_tensors="pt")
with torch.no_grad():
# MMS
x = net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
lang_code=lang_code,
)[0, :]
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
total_audio.append(x)
print(f'\n\n_______________________________ {_t} {x.shape=}')
x = torch.cat(total_audio).cpu().numpy()
# x /= np.abs(x).max() + 1e-7 ~ Volume normalisation @api.py:tts_multi_sentence() OR demo.py
return x # 16kHz - only resample StyleTTS2 from 24Hkz -> 16kHz