File size: 12,515 Bytes
780c8d5 d72b2c3 c7362aa 38f0a43 c7362aa d72b2c3 c7362aa d72b2c3 780c8d5 cf02fb0 c7362aa d72b2c3 780c8d5 d72b2c3 780c8d5 d72b2c3 38f0a43 d72b2c3 c7362aa 780c8d5 d72b2c3 c7362aa d72b2c3 c7362aa d72b2c3 c7362aa 780c8d5 c7362aa 780c8d5 c7362aa d72b2c3 c7362aa d72b2c3 780c8d5 d72b2c3 62ef231 d72b2c3 d353343 780c8d5 62ef231 780c8d5 62ef231 780c8d5 62ef231 780c8d5 62ef231 c7362aa 62ef231 780c8d5 62ef231 d72b2c3 bb2cd38 780c8d5 c7362aa d72b2c3 c7362aa 62ef231 64ccdd0 d72b2c3 780c8d5 64ccdd0 780c8d5 64ccdd0 780c8d5 9146509 c7362aa d72b2c3 c7362aa 62ef231 d72b2c3 c7362aa a93bf0d c7362aa d353343 c7362aa d72b2c3 c7362aa c2687b7 64e63ea c7362aa c2687b7 780c8d5 c7362aa c2687b7 64e63ea 38f0a43 be18bf8 780c8d5 b399825 780c8d5 b399825 780c8d5 b399825 38f0a43 780c8d5 38f0a43 780c8d5 cf02fb0 5b7599e b399825 780c8d5 be18bf8 38f0a43 be18bf8 560f712 be18bf8 38f0a43 be18bf8 b399825 be18bf8 cf02fb0 be18bf8 780c8d5 be18bf8 38f0a43 be18bf8 780c8d5 be18bf8 560f712 be18bf8 38f0a43 be18bf8 c7362aa be18bf8 560f712 be18bf8 b399825 be18bf8 b399825 be18bf8 38f0a43 be18bf8 38f0a43 be18bf8 780c8d5 be18bf8 c7362aa cf02fb0 c7362aa 780c8d5 c2687b7 cf02fb0 c2687b7 cf02fb0 c7362aa c2687b7 5b7599e b399825 c7362aa 780c8d5 c7362aa 780c8d5 b399825 780c8d5 c2687b7 be18bf8 c2687b7 be18bf8 b399825 780c8d5 b399825 780c8d5 c2687b7 5b7599e c2687b7 cf02fb0 c2687b7 cf02fb0 780c8d5 c7362aa 780c8d5 c2687b7 cf02fb0 c2687b7 cf02fb0 c2687b7 cf02fb0 c2687b7 cf02fb0 c2687b7 c7362aa c2687b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
from Modules.vits.models import VitsModel, VitsTokenizer
import sys
import tempfile
import re
import os
from collections import OrderedDict
from Modules.hifigan import Decoder
from Utils.PLBERT.util import load_plbert
import phonemizer
import torch
from cached_path import cached_path
import nltk
import audresample
nltk.download('punkt', download_dir='./') # comment if downloaded once
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
import numpy as np
import yaml
import librosa
from models import ProsodyPredictor, TextEncoder, StyleEncoder, MelSpec
from nltk.tokenize import word_tokenize
from Utils.text_utils import transliterate_number
import textwrap
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
mel_spec = MelSpec().to(device)
def compute_style(path):
x, sr = librosa.load(path, sr=24000)
x, _ = librosa.effects.trim(x, top_db=30)
if sr != 24000:
x = librosa.resample(x, sr, 24000)
with torch.no_grad():
x = torch.from_numpy(x[None, :]).to(device=device, dtype=torch.float)
mel_tensor = (torch.log(1e-5 + mel_spec(x)) + 4) / 4
#mel_tensor = preprocess(audio).to(device)
ref_s = style_encoder(mel_tensor)
ref_p = predictor_encoder(mel_tensor) # [bs, 11, 1, 128]
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256]
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11]
return s # [1, 128, 11]
global_phonemizer = phonemizer.backend.EspeakBackend(
language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
args = yaml.safe_load(open(str('Utils/config.yml')))
ASR_config = args['ASR_config']
bert = load_plbert(args['PLBERT_dir']).eval().to(device)
decoder = Decoder(dim_in=512,
style_dim=128,
dim_out=80, # n_mels
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]).eval().to(device)
text_encoder = TextEncoder(channels=512,
kernel_size=5,
depth=3, # args['model_params']['n_layer'],
n_symbols=178, # args['model_params']['n_token']
).eval().to(device)
predictor = ProsodyPredictor(style_dim=128,
d_hid=512,
nlayers=3, # OFFICIAL config.nlayers=5;
max_dur=50).eval().to(device)
style_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # acoustic style encoder
predictor_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # prosodic style encoder
bert_encoder = torch.nn.Linear(bert.config.hidden_size, 512).eval().to(device)
# params_whole = torch.load('freevc2/yl4579_styletts2.pth' map_location='cpu')
params_whole = torch.load(str(cached_path(
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu', weights_only=True)
params = params_whole['net']
#params['decoder'].pop('module.generator.m_source.l_linear.weight')
#params['decoder'].pop('module.generator.m_source.l_linear.bias') # SourceHNSf
def _del_prefix(d):
# del ".module"
out = OrderedDict()
for k, v in d.items():
out[k[7:]] = v
return out
bert.load_state_dict(_del_prefix(params['bert']), strict=True)
bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
# XTRA non-ckpt LSTMs nlayers add slowiness to voice
predictor.load_state_dict(_del_prefix(params['predictor']), strict=True)
decoder.load_state_dict(_del_prefix(params['decoder']), strict=True)
text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
predictor_encoder.load_state_dict(_del_prefix(
params['predictor_encoder']), strict=True)
style_encoder.load_state_dict(_del_prefix(
params['style_encoder']), strict=True)
def inference(text,
ref_s):
# text = transliterate_number(text, lang='en').strip() # Transliteration only used for foreign() # perhaps add xtra . after ? ;
ps = global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
hidden_states = text_encoder(tokens)
bert_dur = bert(tokens, attention_mask=torch.ones_like(tokens))
d_en = bert_encoder(bert_dur).transpose(-1, -2)
aln_trg, F0_pred, N_pred = predictor(d_en=d_en, s=ref_s[:, 128:, :])
asr = torch.bmm(aln_trg, hidden_states)
asr = asr.transpose(1, 2)
asr = torch.cat([asr[:, :, 0:1], asr[:, :, 0:-1]], 2)
x = decoder(asr=asr, # [1, 512, 201]
F0_curve=F0_pred, # [1, 1, 402] 2x time
N=N_pred, # [1, 1, 402] 2x time
s=ref_s[:, :128, :]) # [1, 256, 1]
x = x.cpu().numpy()[0, 0, :]
x[-400:] = 0 # noisy pulse produced for unterminated sentences, in absence of punctuation, (not sure if same behaviour for all voices)
# StyleTTS2 is 24kHz -> Resample to 16kHz as is AudioGen / MMS
if x.shape[0] > 10:
x = audresample.resample(signal=x.astype(np.float32),
original_rate=24000,
target_rate=16000)[0, :] # audresample reshapes (64,) -> (1,64) | Volume Normalisation applies in api.py:tts_multi_sentence()
else:
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
x = np.zeros(0)
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# ==============================================================================================
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
# ==============================================================================================
PHONEME_MAP = {
'služ': 'sloooozz', # 'službeno'
'suver': 'siuveeerra', # 'suverena'
'država': 'dirrezav', # 'država'
'iči': 'ici', # 'Graniči'
's ': 'se', # a s with space
'q': 'ku',
'w': 'aou',
'z': 's',
"š": "s",
'th': 'ta',
'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
"ž": "z",
# "c": "č"
}
def fix_phones(text):
for src, target in PHONEME_MAP.items():
text = text.replace(src, target)
# text = re.sub(r'\s+', '` `', text) #.strip() #.lower()
# text = re.sub(r'\s+', '_ _', text) # almost proper pausing
return text.replace(',', '_ _').replace('.', '_ _')
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
def foreign(text=None, # split sentences here so we can prepend a txt for german to each sentence to
# fall on the male voice (Sink attn)
lang='romanian',
speed=None):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv
lang = lang.lower()
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
if has_cyrillic(text): # check 0-th sentence if is cyrillic
# romani carpathian (also has latin / cyrillic Vlax)
lang_code = 'rmc-script_cyrillic'
else:
# romani carpathian (has also Vlax)
lang_code = 'rmc-script_latin'
elif 'rom' in lang:
lang_code = 'ron'
elif 'ger' in lang or 'deu' in lang or 'allem' in lang:
lang_code = 'deu'
elif 'alban' in lang:
lang_code = 'sqi'
else:
lang_code = lang.split()[0].strip()
# load VITS
# net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
# tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
total_audio = []
# Split long sentences if deu to control voice switch - for other languages let text no-split
if not isinstance(text, list):
# Split Very long sentences
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 440, break_long_words=0)]
for _t in text:
_t = _t.lower()
# NUMBERS
try:
_t = transliterate_number(_t, lang=lang_code)
except NotImplementedError:
print('Transliterate Numbers - NotImplemented for {lang_code=}', _t,'\n____________________________________________')
# PRONOUNC.
if lang_code == 'rmc-script_latin':
_t = fix_phones(_t) # phonemes replace per language
elif lang_code == 'ron':
# tone
_t = _t.replace("ţ", "ț"
).replace('ț', 'ts').replace('î', 'u').replace('â', 'a').replace('ş', 's')
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
# input_ids / attention_mask
inputs = tokenizer(_t, return_tensors="pt")
with torch.no_grad():
# MMS
x = net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
lang_code=lang_code,
)[0, :]
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
total_audio.append(x)
print(f'\n\n_______________________________ {_t} {x.shape=}')
x = torch.cat(total_audio).cpu().numpy()
# x /= np.abs(x).max() + 1e-7 ~ Volume normalisation @api.py:tts_multi_sentence() OR demo.py
return x # 16kHz - only resample StyleTTS2 from 24Hkz -> 16kHz
|