yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7791
  • Map: 0.4714
  • Map 50: 0.6956
  • Map 75: 0.5409
  • Map Small: -1.0
  • Map Medium: 0.4873
  • Map Large: 0.5087
  • Mar 1: 0.4392
  • Mar 10: 0.71
  • Mar 100: 0.7539
  • Mar Small: -1.0
  • Mar Medium: 0.6438
  • Mar Large: 0.7737
  • Map Banana: 0.3709
  • Mar 100 Banana: 0.7275
  • Map Orange: 0.4969
  • Mar 100 Orange: 0.7429
  • Map Apple: 0.5463
  • Mar 100 Apple: 0.7914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.9961 0.0048 0.0162 0.0025 -1.0 0.0199 0.0051 0.0369 0.1339 0.2356 -1.0 0.1223 0.2534 0.0042 0.245 0.0063 0.2619 0.0038 0.2
No log 2.0 120 1.7598 0.0221 0.0672 0.0129 -1.0 0.0577 0.0216 0.0639 0.1861 0.3615 -1.0 0.1723 0.3772 0.0439 0.5525 0.0137 0.1548 0.0088 0.3771
No log 3.0 180 1.5885 0.0344 0.0984 0.0195 -1.0 0.04 0.0394 0.1276 0.2906 0.4912 -1.0 0.2277 0.5277 0.0393 0.5725 0.0242 0.3381 0.0398 0.5629
No log 4.0 240 1.7055 0.0432 0.1236 0.0231 -1.0 0.086 0.0453 0.1399 0.2912 0.4533 -1.0 0.1991 0.493 0.0514 0.48 0.0468 0.3143 0.0313 0.5657
No log 5.0 300 1.5373 0.0441 0.0939 0.0325 -1.0 0.0775 0.049 0.1611 0.3362 0.4907 -1.0 0.117 0.5434 0.0504 0.595 0.0585 0.3429 0.0233 0.5343
No log 6.0 360 1.3281 0.078 0.1589 0.0696 -1.0 0.1315 0.0958 0.2488 0.4444 0.6168 -1.0 0.4062 0.6491 0.0527 0.6375 0.1145 0.6214 0.0667 0.5914
No log 7.0 420 1.1093 0.084 0.1721 0.0795 -1.0 0.2091 0.0909 0.2741 0.5155 0.6735 -1.0 0.5036 0.6996 0.0753 0.6875 0.0937 0.65 0.0829 0.6829
No log 8.0 480 1.0723 0.1198 0.2091 0.126 -1.0 0.3302 0.1316 0.3113 0.5349 0.6929 -1.0 0.5598 0.7189 0.0885 0.635 0.1448 0.681 0.1259 0.7629
1.4412 9.0 540 0.9907 0.1246 0.2195 0.1319 -1.0 0.1973 0.1443 0.3778 0.5932 0.7191 -1.0 0.5759 0.7445 0.1133 0.6925 0.1306 0.6762 0.1298 0.7886
1.4412 10.0 600 0.9855 0.1517 0.2615 0.1465 -1.0 0.2562 0.1671 0.35 0.5819 0.6753 -1.0 0.4375 0.7129 0.1153 0.685 0.1784 0.6381 0.1613 0.7029
1.4412 11.0 660 0.9734 0.1793 0.2934 0.1965 -1.0 0.2641 0.1978 0.3564 0.6029 0.6922 -1.0 0.4839 0.7249 0.1385 0.6975 0.1879 0.6476 0.2114 0.7314
1.4412 12.0 720 1.0457 0.2177 0.3468 0.2265 -1.0 0.2242 0.2489 0.3676 0.6224 0.6648 -1.0 0.4259 0.704 0.158 0.66 0.255 0.6286 0.2399 0.7057
1.4412 13.0 780 0.8756 0.2393 0.3799 0.2619 -1.0 0.3545 0.2646 0.4163 0.6819 0.7369 -1.0 0.6054 0.7577 0.1926 0.745 0.2709 0.7143 0.2546 0.7514
1.4412 14.0 840 0.9067 0.2987 0.4602 0.3327 -1.0 0.4857 0.305 0.3873 0.6723 0.7256 -1.0 0.6661 0.7371 0.2039 0.7025 0.3302 0.7429 0.362 0.7314
1.4412 15.0 900 0.9761 0.2658 0.4491 0.2969 -1.0 0.3493 0.2926 0.3656 0.6225 0.7037 -1.0 0.5911 0.7232 0.2068 0.685 0.3045 0.6976 0.286 0.7286
1.4412 16.0 960 0.9318 0.2791 0.4399 0.3218 -1.0 0.3934 0.3035 0.3802 0.6542 0.7144 -1.0 0.6054 0.733 0.2017 0.7 0.306 0.6976 0.3295 0.7457
0.8426 17.0 1020 0.8593 0.3076 0.4558 0.3454 -1.0 0.42 0.3289 0.4046 0.678 0.7545 -1.0 0.6589 0.7731 0.2056 0.7125 0.3782 0.7452 0.3389 0.8057
0.8426 18.0 1080 0.8634 0.3121 0.5056 0.3313 -1.0 0.4074 0.347 0.4025 0.6684 0.7438 -1.0 0.6393 0.7646 0.2542 0.6925 0.3362 0.7476 0.3459 0.7914
0.8426 19.0 1140 0.8064 0.3787 0.5725 0.3908 -1.0 0.422 0.4135 0.4251 0.7022 0.7504 -1.0 0.6313 0.774 0.2907 0.695 0.4079 0.7476 0.4376 0.8086
0.8426 20.0 1200 0.7830 0.4137 0.6134 0.4445 -1.0 0.4597 0.446 0.4294 0.7059 0.7565 -1.0 0.6259 0.7801 0.3242 0.7225 0.4305 0.75 0.4864 0.7971
0.8426 21.0 1260 0.7738 0.4224 0.6321 0.468 -1.0 0.4326 0.4516 0.4314 0.7087 0.7619 -1.0 0.6232 0.7866 0.3299 0.7325 0.4396 0.7619 0.4977 0.7914
0.8426 22.0 1320 0.8010 0.429 0.6543 0.4765 -1.0 0.4505 0.4649 0.4238 0.7088 0.7403 -1.0 0.6027 0.7643 0.3371 0.7175 0.4546 0.7262 0.4953 0.7771
0.8426 23.0 1380 0.7663 0.4368 0.6546 0.473 -1.0 0.4744 0.4744 0.4363 0.7014 0.7561 -1.0 0.6571 0.7754 0.3623 0.7125 0.4574 0.7643 0.4906 0.7914
0.8426 24.0 1440 0.7869 0.4652 0.704 0.5348 -1.0 0.4769 0.4996 0.4319 0.7171 0.75 -1.0 0.6295 0.7716 0.3588 0.7225 0.5102 0.7476 0.5265 0.78
0.6721 25.0 1500 0.7694 0.466 0.6751 0.5348 -1.0 0.4933 0.5055 0.4348 0.7088 0.752 -1.0 0.6509 0.7704 0.3672 0.725 0.4856 0.731 0.5452 0.8
0.6721 26.0 1560 0.7674 0.4673 0.6805 0.5337 -1.0 0.4829 0.5079 0.4362 0.7093 0.7527 -1.0 0.6375 0.7737 0.3688 0.7225 0.4927 0.7357 0.5405 0.8
0.6721 27.0 1620 0.7790 0.4742 0.7018 0.5431 -1.0 0.486 0.5139 0.4414 0.7103 0.7557 -1.0 0.6438 0.7759 0.3763 0.7275 0.5016 0.7452 0.5448 0.7943
0.6721 28.0 1680 0.7775 0.4726 0.6975 0.5412 -1.0 0.4855 0.5109 0.4383 0.7101 0.7522 -1.0 0.6366 0.7728 0.3748 0.7275 0.4959 0.7405 0.5472 0.7886
0.6721 29.0 1740 0.7791 0.4715 0.6957 0.5409 -1.0 0.4873 0.5089 0.4392 0.7109 0.7539 -1.0 0.6438 0.7737 0.3715 0.7275 0.4969 0.7429 0.5462 0.7914
0.6721 30.0 1800 0.7791 0.4714 0.6956 0.5409 -1.0 0.4873 0.5087 0.4392 0.71 0.7539 -1.0 0.6438 0.7737 0.3709 0.7275 0.4969 0.7429 0.5463 0.7914

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for diribes/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(54)
this model