brain-diffuser / scripts /imagined.py
dineshsai07's picture
Upload imagined.py
d7e0ac0 verified
import sys
sys.path.append('versatile_diffusion')
import os
import os.path as osp
import PIL
from PIL import Image
from pathlib import Path
import numpy as np
import numpy.random as npr
import torch
import torchvision.transforms as tvtrans
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from lib.model_zoo.ddim_vd import DDIMSampler_VD
from lib.experiments.sd_default import color_adjust, auto_merge_imlist
from torch.utils.data import DataLoader, Dataset
from lib.model_zoo.vd import VD
from lib.cfg_holder import cfg_unique_holder as cfguh
from lib.cfg_helper import get_command_line_args, cfg_initiates, load_cfg_yaml
import matplotlib.pyplot as plt
from skimage.transform import resize, downscale_local_mean
import argparse
parser = argparse.ArgumentParser(description='Argument Parser')
parser.add_argument("-sub", "--sub",help="Subject Number",default=1)
parser.add_argument("-diff_str", "--diff_str",help="Diffusion Strength",default=0.75)
parser.add_argument("-mix_str", "--mix_str",help="Mixing Strength",default=0.4)
args = parser.parse_args()
sub=int(args.sub)
assert sub in [1,2,5,7]
strength = float(args.diff_str)
mixing = float(args.mix_str)
def regularize_image(x):
BICUBIC = PIL.Image.Resampling.BICUBIC
if isinstance(x, str):
x = Image.open(x).resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, PIL.Image.Image):
x = x.resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, np.ndarray):
x = PIL.Image.fromarray(x).resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, torch.Tensor):
pass
else:
assert False, 'Unknown image type'
assert (x.shape[1]==512) & (x.shape[2]==512), \
'Wrong image size'
return x
cfgm_name = 'vd_noema'
sampler = DDIMSampler_VD
pth = 'versatile_diffusion/pretrained/vd-four-flow-v1-0-fp16-deprecated.pth'
cfgm = model_cfg_bank()(cfgm_name)
net = get_model()(cfgm)
sd = torch.load(pth, map_location='cpu')
net.load_state_dict(sd, strict=False)
# Ensuring proper GPU device assignment, using cuda:0 for all tensor assignments
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Move models and data to GPU (cuda:0)
net.clip.cuda(0)
net.autokl.cuda(0)
sampler = sampler(net)
sampler.model.model.diffusion_model.device = device
sampler.model.model.diffusion_model.half().to(device)
batch_size = 1
# Load predicted features and move them to GPU
pred_text = np.load('data/predicted_features/subj{:02d}/nsd_cliptext_predtest_nsdgeneral.npy'.format(sub))
pred_text = torch.tensor(pred_text).half().to(device)
pred_vision = np.load('data/predicted_features/subj{:02d}/nsd_clipvision_predtest_nsdgeneral.npy'.format(sub))
pred_vision = torch.tensor(pred_vision).half().to(device)
n_samples = 1
ddim_steps = 50
ddim_eta = 0
scale = 7.5
xtype = 'image'
ctype = 'prompt'
net.autokl.half()
torch.manual_seed(0)
## for clip text ########
# cfgm_name = 'vd_noema'
# pth = 'versatile_diffusion/pretrained/vd-four-flow-v1-0-fp16-deprecated.pth'
# cfgm = model_cfg_bank()(cfgm_name)
# net = get_model()(cfgm)
# sd = torch.load(pth, map_location='cpu')
# net.load_state_dict(sd, strict=False)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net.clip = net.clip.to(device)
# with torch.no_grad():
while True:
image_id = int(input("Imagine a random object or scenery "))
for im_id in range(image_id,image_id+1):
# print("surya theja -------------------------------")
zim = Image.open('results/vdvae/subj{:02d}/{}.png'.format(sub,im_id))
test_img = Image.open('data/nsddata_stimuli/test_images/{}.png'.format(im_id))
# Display the test image
test_img.save('scripts/images/imagined_image.png'.format(sub, im_id))
annot = input("Describe what you have imagined in few words : ")
zim = regularize_image(zim)
zin = zim*2 - 1
zin = zin.unsqueeze(0).to(device).half()
init_latent = net.autokl_encode(zin)
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False)
t_enc = int(strength * ddim_steps)
# Encode the image using the sampler
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]).to(device))
# Encoding text and vision
dummy = ''
utx = net.clip_encode_text(dummy)
utx = utx.to(device).half()
dummy = torch.zeros((1,3,224,224)).to(device)
uim = net.clip_encode_vision(dummy)
uim = uim.to(device).half()
z_enc = z_enc.to(device)
# Sample configuration for diffusion
h, w = 512,512
shape = [n_samples, 4, h//8, w//8]
cim = pred_vision[im_id].unsqueeze(0).to(device)
# ctx = pred_text[im_id].unsqueeze(0).to(device)
pred_text = np.load('data/predicted_features/subj{:02d}/nsd_cliptext_predtest_nsdgeneral.npy'.format(sub))
with torch.no_grad():
pred_text[im_id] = net.clip_encode_text([annot]).to('cpu').numpy().mean(0)
pred_text = torch.tensor(pred_text).half().to(device)
ctx = pred_text[im_id].unsqueeze(0).to(device)
# Decode using sampler
z = sampler.decode_dc(
x_latent=z_enc,
first_conditioning=[uim, cim],
second_conditioning=[utx, ctx],
t_start=t_enc,
unconditional_guidance_scale=scale,
xtype='image',
first_ctype='vision',
second_ctype='prompt',
mixed_ratio=(1-mixing),
)
z = z.to(device).half()
x = net.autokl_decode(z)
# Adjust color if needed
color_adj='None'
color_adj_flag = (color_adj != 'none') and (color_adj != 'None') and (color_adj is not None)
color_adj_simple = (color_adj == 'Simple') or color_adj == 'simple'
color_adj_keep_ratio = 0.5
if color_adj_flag and (ctype == 'vision'):
x_adj = []
for xi in x:
color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
xi_adj = color_adj_f((xi+1)/2, keep=color_adj_keep_ratio, simple=color_adj_simple)
x_adj.append(xi_adj)
x = x_adj
else:
x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
x = [tvtrans.ToPILImage()(xi) for xi in x]
# Save output image
x[0].save('scripts/images/reconstructed.png'.format(sub, im_id))