|
import sys |
|
import numpy as np |
|
import sklearn.linear_model as skl |
|
import pickle |
|
import argparse |
|
parser = argparse.ArgumentParser(description='Argument Parser') |
|
parser.add_argument("-sub", "--sub",help="Subject Number",default=1) |
|
args = parser.parse_args() |
|
sub=int(args.sub) |
|
assert sub in [1,2,5,7] |
|
|
|
train_path = 'data/processed_data/subj{:02d}/nsd_train_fmriavg_nsdgeneral_sub{}.npy'.format(sub,sub) |
|
train_fmri = np.load(train_path) |
|
test_path = 'data/processed_data/subj{:02d}/nsd_test_fmriavg_nsdgeneral_sub{}.npy'.format(sub,sub) |
|
test_fmri = np.load(test_path) |
|
|
|
|
|
|
|
train_fmri = train_fmri/300 |
|
test_fmri = test_fmri/300 |
|
|
|
|
|
norm_mean_train = np.mean(train_fmri, axis=0) |
|
norm_scale_train = np.std(train_fmri, axis=0, ddof=1) |
|
train_fmri = (train_fmri - norm_mean_train) / norm_scale_train |
|
test_fmri = (test_fmri - norm_mean_train) / norm_scale_train |
|
|
|
print(np.mean(train_fmri),np.std(train_fmri)) |
|
print(np.mean(test_fmri),np.std(test_fmri)) |
|
|
|
print(np.max(train_fmri),np.min(train_fmri)) |
|
print(np.max(test_fmri),np.min(test_fmri)) |
|
|
|
num_voxels, num_train, num_test = train_fmri.shape[1], len(train_fmri), len(test_fmri) |
|
|
|
|
|
train_clip = np.load('data/extracted_features/subj{:02d}/nsd_clipvision_train.npy'.format(sub)) |
|
test_clip = np.load('data/extracted_features/subj{:02d}/nsd_clipvision_test.npy'.format(sub)) |
|
|
|
|
|
num_samples,num_embed,num_dim = train_clip.shape |
|
|
|
print("Training Regression") |
|
reg_w = np.zeros((num_embed,num_dim,num_voxels)).astype(np.float32) |
|
reg_b = np.zeros((num_embed,num_dim)).astype(np.float32) |
|
pred_clip = np.zeros_like(test_clip) |
|
for i in range(num_embed): |
|
|
|
|
|
reg = skl.Ridge(alpha=60000, max_iter=50000, fit_intercept=True) |
|
reg.fit(train_fmri, train_clip[:,i]) |
|
reg_w[i] = reg.coef_ |
|
reg_b[i] = reg.intercept_ |
|
|
|
pred_test_latent = reg.predict(test_fmri) |
|
std_norm_test_latent = (pred_test_latent - np.mean(pred_test_latent,axis=0)) / np.std(pred_test_latent,axis=0) |
|
pred_clip[:,i] = std_norm_test_latent * np.std(train_clip[:,i],axis=0) + np.mean(train_clip[:,i],axis=0) |
|
|
|
print(i,reg.score(test_fmri,test_clip[:,i])) |
|
|
|
|
|
np.save('data/predicted_features/subj{:02d}/nsd_clipvision_predtest_nsdgeneral.npy'.format(sub),pred_clip) |
|
|
|
datadict = { |
|
'weight' : reg_w, |
|
'bias' : reg_b, |
|
|
|
} |
|
|
|
with open('data/regression_weights/subj{:02d}/clipvision_regression_weights.pkl'.format(sub),"wb") as f: |
|
pickle.dump(datadict,f) |
|
|