|
import sys |
|
sys.path.append('versatile_diffusion') |
|
import os |
|
import PIL |
|
from PIL import Image |
|
import numpy as np |
|
|
|
import torch |
|
from lib.cfg_helper import model_cfg_bank |
|
from lib.model_zoo import get_model |
|
from lib.experiments.sd_default import color_adjust, auto_merge_imlist |
|
from torch.utils.data import DataLoader, Dataset |
|
|
|
from lib.model_zoo.vd import VD |
|
from lib.cfg_holder import cfg_unique_holder as cfguh |
|
from lib.cfg_helper import get_command_line_args, cfg_initiates, load_cfg_yaml |
|
import torchvision.transforms as T |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser(description='Argument Parser') |
|
parser.add_argument("-sub", "--sub",help="Subject Number",default=1) |
|
args = parser.parse_args() |
|
sub=int(args.sub) |
|
assert sub in [1,2,5,7] |
|
|
|
cfgm_name = 'vd_noema' |
|
|
|
pth = 'versatile_diffusion/pretrained/vd-four-flow-v1-0-fp16-deprecated.pth' |
|
cfgm = model_cfg_bank()(cfgm_name) |
|
net = get_model()(cfgm) |
|
sd = torch.load(pth, map_location='cpu') |
|
net.load_state_dict(sd, strict=False) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
net.clip = net.clip.to(device) |
|
|
|
class batch_generator_external_images(Dataset): |
|
|
|
def __init__(self, data_path): |
|
self.data_path = data_path |
|
self.im = np.load(data_path).astype(np.uint8) |
|
|
|
|
|
def __getitem__(self,idx): |
|
img = Image.fromarray(self.im[idx]) |
|
img = T.functional.resize(img,(512,512)) |
|
img = T.functional.to_tensor(img).float() |
|
|
|
img = img*2 - 1 |
|
return img |
|
|
|
def __len__(self): |
|
return len(self.im) |
|
|
|
batch_size=1 |
|
image_path = 'data/processed_data/subj{:02d}/nsd_train_stim_sub{}.npy'.format(sub,sub) |
|
train_images = batch_generator_external_images(data_path = image_path) |
|
|
|
image_path = 'data/processed_data/subj{:02d}/nsd_test_stim_sub{}.npy'.format(sub,sub) |
|
test_images = batch_generator_external_images(data_path = image_path) |
|
|
|
trainloader = DataLoader(train_images,batch_size,shuffle=False) |
|
testloader = DataLoader(test_images,batch_size,shuffle=False) |
|
|
|
num_embed, num_features, num_test, num_train = 257, 768, len(test_images), len(train_images) |
|
|
|
train_clip = np.zeros((num_train,num_embed,num_features)) |
|
test_clip = np.zeros((num_test,num_embed,num_features)) |
|
|
|
with torch.no_grad(): |
|
for i,cin in enumerate(testloader): |
|
print(i) |
|
|
|
c = net.clip_encode_vision(cin) |
|
test_clip[i] = c[0].cpu().numpy() |
|
|
|
np.save('data/extracted_features/subj{:02d}/nsd_clipvision_test.npy'.format(sub),test_clip) |
|
|
|
for i,cin in enumerate(trainloader): |
|
print(i) |
|
|
|
c = net.clip_encode_vision(cin) |
|
train_clip[i] = c[0].cpu().numpy() |
|
np.save('data/extracted_features/subj{:02d}/nsd_clipvision_train.npy'.format(sub),train_clip) |
|
|
|
|
|
|
|
|
|
|