|
import sys |
|
sys.path.append('versatile_diffusion') |
|
import os |
|
import numpy as np |
|
|
|
import torch |
|
from lib.cfg_helper import model_cfg_bank |
|
from lib.model_zoo import get_model |
|
from torch.utils.data import DataLoader, Dataset |
|
|
|
from lib.model_zoo.vd import VD |
|
from lib.cfg_holder import cfg_unique_holder as cfguh |
|
from lib.cfg_helper import get_command_line_args, cfg_initiates, load_cfg_yaml |
|
import matplotlib.pyplot as plt |
|
import torchvision.transforms as T |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser(description='Argument Parser') |
|
parser.add_argument("-sub", "--sub",help="Subject Number",default=1) |
|
args = parser.parse_args() |
|
sub=int(args.sub) |
|
assert sub in [1,2,5,7] |
|
|
|
cfgm_name = 'vd_noema' |
|
pth = 'versatile_diffusion/pretrained/vd-four-flow-v1-0-fp16-deprecated.pth' |
|
cfgm = model_cfg_bank()(cfgm_name) |
|
net = get_model()(cfgm) |
|
sd = torch.load(pth, map_location='cpu') |
|
net.load_state_dict(sd, strict=False) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
net.clip = net.clip.to(device) |
|
|
|
train_caps = np.load('data/processed_data/subj{:02d}/nsd_train_cap_sub{}.npy'.format(sub,sub)) |
|
test_caps = np.load('data/processed_data/subj{:02d}/nsd_test_cap_sub{}.npy'.format(sub,sub)) |
|
|
|
num_embed, num_features, num_test, num_train = 77, 768, len(test_caps), len(train_caps) |
|
|
|
train_clip = np.zeros((num_train,num_embed, num_features)) |
|
test_clip = np.zeros((num_test,num_embed, num_features)) |
|
with torch.no_grad(): |
|
for i,annots in enumerate(test_caps): |
|
cin = list(annots[annots!='']) |
|
print(i) |
|
c = net.clip_encode_text(cin) |
|
test_clip[i] = c.to('cpu').numpy().mean(0) |
|
|
|
np.save('data/extracted_features/subj{:02d}/nsd_cliptext_test.npy'.format(sub),test_clip) |
|
|
|
for i,annots in enumerate(train_caps): |
|
cin = list(annots[annots!='']) |
|
print(i) |
|
c = net.clip_encode_text(cin) |
|
train_clip[i] = c.to('cpu').numpy().mean(0) |
|
np.save('data/extracted_features/subj{:02d}/nsd_cliptext_train.npy'.format(sub),train_clip) |
|
|
|
|
|
|