brain-diffuser / scripts /cliptext_extract_features.py
dineshsai07's picture
Add files using upload-large-folder tool
01f47a8 verified
import sys
sys.path.append('versatile_diffusion')
import os
import numpy as np
import torch
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from torch.utils.data import DataLoader, Dataset
from lib.model_zoo.vd import VD
from lib.cfg_holder import cfg_unique_holder as cfguh
from lib.cfg_helper import get_command_line_args, cfg_initiates, load_cfg_yaml
import matplotlib.pyplot as plt
import torchvision.transforms as T
import argparse
parser = argparse.ArgumentParser(description='Argument Parser')
parser.add_argument("-sub", "--sub",help="Subject Number",default=1)
args = parser.parse_args()
sub=int(args.sub)
assert sub in [1,2,5,7]
cfgm_name = 'vd_noema'
pth = 'versatile_diffusion/pretrained/vd-four-flow-v1-0-fp16-deprecated.pth'
cfgm = model_cfg_bank()(cfgm_name)
net = get_model()(cfgm)
sd = torch.load(pth, map_location='cpu')
net.load_state_dict(sd, strict=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net.clip = net.clip.to(device)
train_caps = np.load('data/processed_data/subj{:02d}/nsd_train_cap_sub{}.npy'.format(sub,sub))
test_caps = np.load('data/processed_data/subj{:02d}/nsd_test_cap_sub{}.npy'.format(sub,sub))
num_embed, num_features, num_test, num_train = 77, 768, len(test_caps), len(train_caps)
train_clip = np.zeros((num_train,num_embed, num_features))
test_clip = np.zeros((num_test,num_embed, num_features))
with torch.no_grad():
for i,annots in enumerate(test_caps):
cin = list(annots[annots!=''])
print(i)
c = net.clip_encode_text(cin)
test_clip[i] = c.to('cpu').numpy().mean(0)
np.save('data/extracted_features/subj{:02d}/nsd_cliptext_test.npy'.format(sub),test_clip)
for i,annots in enumerate(train_caps):
cin = list(annots[annots!=''])
print(i)
c = net.clip_encode_text(cin)
train_clip[i] = c.to('cpu').numpy().mean(0)
np.save('data/extracted_features/subj{:02d}/nsd_cliptext_train.npy'.format(sub),train_clip)