File size: 21,126 Bytes
46a8d8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import os
import os.path as osp
import PIL
from PIL import Image
from pathlib import Path
import numpy as np
import numpy.random as npr
import torch
import torchvision.transforms as tvtrans
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from lib.model_zoo.ddim_dualcontext import DDIMSampler_DualContext
from lib.experiments.sd_default import color_adjust, auto_merge_imlist
import argparse
n_sample_image_default = 2
n_sample_text_default = 4
def highlight_print(info):
print('')
print(''.join(['#']*(len(info)+4)))
print('# '+info+' #')
print(''.join(['#']*(len(info)+4)))
print('')
class vd_inference(object):
def __init__(self, pth='pretrained/vd1.0-four-flow.pth', fp16=False, device=0):
cfgm_name = 'vd_noema'
cfgm = model_cfg_bank()('vd_noema')
device_str = device if isinstance(device, str) else 'cuda:{}'.format(device)
cfgm.args.autokl_cfg.map_location = device_str
cfgm.args.optimus_cfg.map_location = device_str
net = get_model()(cfgm)
if fp16:
highlight_print('Running in FP16')
net.clip.fp16 = True
net = net.half()
sd = torch.load(pth, map_location=device_str)
net.load_state_dict(sd, strict=False)
print('Load pretrained weight from {}'.format(pth))
net.to(device)
self.device = device
self.model_name = cfgm_name
self.net = net
self.fp16 = fp16
from lib.model_zoo.ddim_vd import DDIMSampler_VD
self.sampler = DDIMSampler_VD(net)
def regularize_image(self, x):
BICUBIC = PIL.Image.Resampling.BICUBIC
if isinstance(x, str):
x = Image.open(x).resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, PIL.Image.Image):
x = x.resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, np.ndarray):
x = PIL.Image.fromarray(x).resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, torch.Tensor):
pass
else:
assert False, 'Unknown image type'
assert (x.shape[1]==512) & (x.shape[2]==512), \
'Wrong image size'
x = x.to(self.device)
if self.fp16:
x = x.half()
return x
def decode(self, z, xtype, ctype, color_adj='None', color_adj_to=None):
net = self.net
if xtype == 'image':
x = net.autokl_decode(z)
color_adj_flag = (color_adj!='none') and (color_adj!='None') and (color_adj is not None)
color_adj_simple = (color_adj=='Simple') or color_adj=='simple'
color_adj_keep_ratio = 0.5
if color_adj_flag and (ctype=='vision'):
x_adj = []
for xi in x:
color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
xi_adj = color_adj_f((xi+1)/2, keep=color_adj_keep_ratio, simple=color_adj_simple)
x_adj.append(xi_adj)
x = x_adj
else:
x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
x = [tvtrans.ToPILImage()(xi) for xi in x]
return x
elif xtype == 'text':
prompt_temperature = 1.0
prompt_merge_same_adj_word = True
x = net.optimus_decode(z, temperature=prompt_temperature)
if prompt_merge_same_adj_word:
xnew = []
for xi in x:
xi_split = xi.split()
xinew = []
for idxi, wi in enumerate(xi_split):
if idxi!=0 and wi==xi_split[idxi-1]:
continue
xinew.append(wi)
xnew.append(' '.join(xinew))
x = xnew
return x
def inference(self, xtype, cin, ctype, scale=7.5, n_samples=None, color_adj=None,):
net = self.net
sampler = self.sampler
ddim_steps = 50
ddim_eta = 0.0
if xtype == 'image':
n_samples = n_sample_image_default if n_samples is None else n_samples
elif xtype == 'text':
n_samples = n_sample_text_default if n_samples is None else n_samples
if ctype in ['prompt', 'text']:
c = net.clip_encode_text(n_samples * [cin])
u = None
if scale != 1.0:
u = net.clip_encode_text(n_samples * [""])
elif ctype in ['vision', 'image']:
cin = self.regularize_image(cin)
ctemp = cin*2 - 1
ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
c = net.clip_encode_vision(ctemp)
u = None
if scale != 1.0:
dummy = torch.zeros_like(ctemp)
u = net.clip_encode_vision(dummy)
u, c = [u.half(), c.half()] if self.fp16 else [u, c]
if xtype == 'image':
h, w = [512, 512]
shape = [n_samples, 4, h//8, w//8]
z, _ = sampler.sample(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=u,
xtype=xtype, ctype=ctype,
eta=ddim_eta,
verbose=False,)
x = self.decode(z, xtype, ctype, color_adj=color_adj, color_adj_to=cin)
return x
elif xtype == 'text':
n = 768
shape = [n_samples, n]
z, _ = sampler.sample(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=u,
xtype=xtype, ctype=ctype,
eta=ddim_eta,
verbose=False,)
x = self.decode(z, xtype, ctype)
return x
def application_disensemble(self, cin, n_samples=None, level=0, color_adj=None,):
net = self.net
scale = 7.5
sampler = self.sampler
ddim_steps = 50
ddim_eta = 0.0
n_samples = n_sample_image_default if n_samples is None else n_samples
cin = self.regularize_image(cin)
ctemp = cin*2 - 1
ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
c = net.clip_encode_vision(ctemp)
u = None
if scale != 1.0:
dummy = torch.zeros_like(ctemp)
u = net.clip_encode_vision(dummy)
u, c = [u.half(), c.half()] if self.fp16 else [u, c]
if level == 0:
pass
else:
c_glb = c[:, 0:1]
c_loc = c[:, 1: ]
u_glb = u[:, 0:1]
u_loc = u[:, 1: ]
if level == -1:
c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=1)
u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=1)
if level == -2:
c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=2)
u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=2)
if level == 1:
c_loc = self.find_low_rank(c_loc, demean=True, q=10)
u_loc = self.find_low_rank(u_loc, demean=True, q=10)
if level == 2:
c_loc = self.find_low_rank(c_loc, demean=True, q=2)
u_loc = self.find_low_rank(u_loc, demean=True, q=2)
c = torch.cat([c_glb, c_loc], dim=1)
u = torch.cat([u_glb, u_loc], dim=1)
h, w = [512, 512]
shape = [n_samples, 4, h//8, w//8]
z, _ = sampler.sample(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=u,
xtype='image', ctype='vision',
eta=ddim_eta,
verbose=False,)
x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=cin)
return x
def find_low_rank(self, x, demean=True, q=20, niter=10):
if demean:
x_mean = x.mean(-1, keepdim=True)
x_input = x - x_mean
else:
x_input = x
if x_input.dtype == torch.float16:
fp16 = True
x_input = x_input.float()
else:
fp16 = False
u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
ss = torch.stack([torch.diag(si) for si in s])
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
if fp16:
x_lowrank = x_lowrank.half()
if demean:
x_lowrank += x_mean
return x_lowrank
def remove_low_rank(self, x, demean=True, q=20, niter=10, q_remove=10):
if demean:
x_mean = x.mean(-1, keepdim=True)
x_input = x - x_mean
else:
x_input = x
if x_input.dtype == torch.float16:
fp16 = True
x_input = x_input.float()
else:
fp16 = False
u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
s[:, 0:q_remove] = 0
ss = torch.stack([torch.diag(si) for si in s])
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
if fp16:
x_lowrank = x_lowrank.half()
if demean:
x_lowrank += x_mean
return x_lowrank
def application_dualguided(self, cim, ctx, n_samples=None, mixing=0.5, color_adj=None, ):
net = self.net
scale = 7.5
sampler = self.sampler
ddim_steps = 50
ddim_eta = 0.0
n_samples = n_sample_image_default if n_samples is None else n_samples
ctemp0 = self.regularize_image(cim)
ctemp1 = ctemp0*2 - 1
ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
cim = net.clip_encode_vision(ctemp1)
uim = None
if scale != 1.0:
dummy = torch.zeros_like(ctemp1)
uim = net.clip_encode_vision(dummy)
ctx = net.clip_encode_text(n_samples * [ctx])
utx = None
if scale != 1.0:
utx = net.clip_encode_text(n_samples * [""])
uim, cim = [uim.half(), cim.half()] if self.fp16 else [uim, cim]
utx, ctx = [utx.half(), ctx.half()] if self.fp16 else [utx, ctx]
h, w = [512, 512]
shape = [n_samples, 4, h//8, w//8]
z, _ = sampler.sample_dc(
steps=ddim_steps,
shape=shape,
first_conditioning=[uim, cim],
second_conditioning=[utx, ctx],
unconditional_guidance_scale=scale,
xtype='image',
first_ctype='vision',
second_ctype='prompt',
eta=ddim_eta,
verbose=False,
mixed_ratio=(1-mixing), )
x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
return x
def application_i2t2i(self, cim, ctx_n, ctx_p, n_samples=None, color_adj=None,):
net = self.net
scale = 7.5
sampler = self.sampler
ddim_steps = 50
ddim_eta = 0.0
prompt_temperature = 1.0
n_samples = n_sample_image_default if n_samples is None else n_samples
ctemp0 = self.regularize_image(cim)
ctemp1 = ctemp0*2 - 1
ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
cim = net.clip_encode_vision(ctemp1)
uim = None
if scale != 1.0:
dummy = torch.zeros_like(ctemp1)
uim = net.clip_encode_vision(dummy)
uim, cim = [uim.half(), cim.half()] if self.fp16 else [uim, cim]
n = 768
shape = [n_samples, n]
zt, _ = sampler.sample(
steps=ddim_steps,
shape=shape,
conditioning=cim,
unconditional_guidance_scale=scale,
unconditional_conditioning=uim,
xtype='text', ctype='vision',
eta=ddim_eta,
verbose=False,)
ztn = net.optimus_encode([ctx_n])
ztp = net.optimus_encode([ctx_p])
ztn_norm = ztn / ztn.norm(dim=1)
zt_proj_mag = torch.matmul(zt, ztn_norm[0])
zt_perp = zt - zt_proj_mag[:, None] * ztn_norm
zt_newd = zt_perp + ztp
ctx_new = net.optimus_decode(zt_newd, temperature=prompt_temperature)
ctx_new = net.clip_encode_text(ctx_new)
ctx_p = net.clip_encode_text([ctx_p])
ctx_new = torch.cat([ctx_new, ctx_p.repeat(n_samples, 1, 1)], dim=1)
utx_new = net.clip_encode_text(n_samples * [""])
utx_new = torch.cat([utx_new, utx_new], dim=1)
cim_loc = cim[:, 1: ]
cim_loc_new = self.find_low_rank(cim_loc, demean=True, q=10)
cim_new = cim_loc_new
uim_new = uim[:, 1:]
h, w = [512, 512]
shape = [n_samples, 4, h//8, w//8]
z, _ = sampler.sample_dc(
steps=ddim_steps,
shape=shape,
first_conditioning=[uim_new, cim_new],
second_conditioning=[utx_new, ctx_new],
unconditional_guidance_scale=scale,
xtype='image',
first_ctype='vision',
second_ctype='prompt',
eta=ddim_eta,
verbose=False,
mixed_ratio=0.33, )
x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
return x
def main(netwrapper,
app,
image=None,
prompt=None,
nprompt=None,
pprompt=None,
color_adj=None,
disentanglement_level=None,
dual_guided_mixing=None,
n_samples=4,
seed=0,):
if seed is not None:
seed = 0 if seed<0 else seed
np.random.seed(seed)
torch.manual_seed(seed+100)
if app == 'text-to-image':
print('Running [{}] with prompt [{}], n_samples [{}], seed [{}].'.format(
app, prompt, n_samples, seed))
if (prompt is None) or (prompt == ""):
return None, None
with torch.no_grad():
rv = netwrapper.inference(
xtype = 'image',
cin = prompt,
ctype = 'prompt',
n_samples = n_samples, )
return rv, None
elif app == 'image-variation':
print('Running [{}] with image [{}], color_adj [{}], n_samples [{}], seed [{}].'.format(
app, image, color_adj, n_samples, seed))
if image is None:
return None, None
with torch.no_grad():
rv = netwrapper.inference(
xtype = 'image',
cin = image,
ctype = 'vision',
color_adj = color_adj,
n_samples = n_samples, )
return rv, None
elif app == 'image-to-text':
print('Running [{}] with iamge [{}], n_samples [{}], seed [{}].'.format(
app, image, n_samples, seed))
if image is None:
return None, None
with torch.no_grad():
rv = netwrapper.inference(
xtype = 'text',
cin = image,
ctype = 'vision',
n_samples = n_samples, )
return None, '\n'.join(rv)
elif app == 'text-variation':
print('Running [{}] with prompt [{}], n_samples [{}], seed [{}].'.format(
app, prompt, n_samples, seed))
if prompt is None:
return None, None
with torch.no_grad():
rv = netwrapper.inference(
xtype = 'text',
cin = prompt,
ctype = 'prompt',
n_samples = n_samples, )
return None, '\n'.join(rv)
elif app == 'disentanglement':
print('Running [{}] with image [{}], color_adj [{}], disentanglement_level [{}], n_samples [{}], seed [{}].'.format(
app, image, color_adj, disentanglement_level, n_samples, seed))
if image is None:
return None, None
with torch.no_grad():
rv = netwrapper.application_disensemble(
cin = image,
level = disentanglement_level,
color_adj = color_adj,
n_samples = n_samples, )
return rv, None
elif app == 'dual-guided':
print('Running [{}] with image [{}], prompt [{}], color_adj [{}], dual_guided_mixing [{}], n_samples [{}], seed [{}].'.format(
app, image, prompt, color_adj, dual_guided_mixing, n_samples, seed))
if (image is None) or (prompt is None) or (prompt==""):
return None, None
with torch.no_grad():
rv = netwrapper.application_dualguided(
cim = image,
ctx = prompt,
mixing = dual_guided_mixing,
color_adj = color_adj,
n_samples = n_samples, )
return rv, None
elif app == 'i2t2i':
print('Running [{}] with image [{}], nprompt [{}], pprompt [{}], color_adj [{}], n_samples [{}], seed [{}].'.format(
app, image, nprompt, pprompt, color_adj, n_samples, seed))
if (image is None) or (nprompt is None) or (nprompt=="") \
or (pprompt is None) or (pprompt==""):
return None, None
with torch.no_grad():
rv = netwrapper.application_i2t2i(
cim = image,
ctx_n = nprompt,
ctx_p = pprompt,
color_adj = color_adj,
n_samples = n_samples, )
return rv, None
else:
assert False, "No such mode!"
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--app", type=str, default="text-to-image",
help="Choose the application from ["\
"text-to-image, image-variation, "\
"image-to-text, text-variation, "\
"disentanglement, dual-guided, i2t2i]")
parser.add_argument(
"--model", type=str, default="official",
help="Choose the model type from ["\
"dc, official]")
parser.add_argument(
"--prompt", type=str,
default="a dream of a village in china, by Caspar "\
"David Friedrich, matte painting trending on artstation HQ")
parser.add_argument("--image", type=str)
parser.add_argument("--nprompt", type=str)
parser.add_argument("--pprompt", type=str)
parser.add_argument("--coloradj", type=str, default='simple')
parser.add_argument("--dislevel", type=int, default=0)
parser.add_argument("--dgmixing", type=float, default=0.7)
parser.add_argument("--nsample", type=int, default=4)
parser.add_argument("--seed", type=int)
parser.add_argument("--save", type=str, default='log',
help="The path or file the result will save into")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--fp16", action="store_true")
# parser.add_argument("--pth", type=str, default='pretrained/vd-four-flow-v1-0.pth')
args = parser.parse_args()
assert args.app in [
"text-to-image", "image-variation",
"image-to-text", "text-variation",
"disentanglement", "dual-guided", "i2t2i"], \
"Unknown app! Select from [text-to-image, image-variation, "\
"image-to-text, text-variation, "\
"disentanglement, dual-guided, i2t2i]"
device=args.gpu if torch.cuda.is_available() else 'cpu'
if args.model in ['4-flow', 'official']:
if args.fp16:
pth='pretrained/vd-four-flow-v1-0-fp16.pth'
else:
pth='pretrained/vd-four-flow-v1-0.pth'
vd_wrapper = vd_inference(pth=pth, fp16=args.fp16, device=device)
elif args.model in ['2-flow', 'dc']:
raise NotImplementedError
# vd_wrapper = vd_dc_inference(args.model, pth=args.pth, device=device)
elif args.model in ['1-flow', 'basic']:
raise NotImplementedError
# vd_wrapper = vd_basic_inference(args.model, pth=args.pth, device=device)
else:
assert False, "No such model! Select model from [4-flow(official), 2-flow(dc), 1-flow(basic)]"
imout, txtout = main(
netwrapper=vd_wrapper,
app=args.app,
image=args.image,
prompt=args.prompt,
nprompt=args.nprompt,
pprompt=args.pprompt,
color_adj=args.coloradj,
disentanglement_level=args.dislevel,
dual_guided_mixing=args.dgmixing,
n_samples=args.nsample,
seed=args.seed,)
if imout is not None:
imout = auto_merge_imlist([np.array(i) for i in imout])
imout = PIL.Image.fromarray(imout)
if osp.isdir(args.save):
imout.save(osp.join(args.save, 'imout.png'))
print('Output image saved to {}.'.format(osp.join(args.save, 'imout.png')))
else:
imout.save(osp.join(args.save))
print('Output image saved to {}.'.format(args.save))
if txtout is not None:
print(txtout)
|