File size: 21,126 Bytes
46a8d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import os
import os.path as osp
import PIL
from PIL import Image
from pathlib import Path
import numpy as np
import numpy.random as npr

import torch
import torchvision.transforms as tvtrans
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from lib.model_zoo.ddim_dualcontext import DDIMSampler_DualContext
from lib.experiments.sd_default import color_adjust, auto_merge_imlist

import argparse

n_sample_image_default = 2
n_sample_text_default = 4

def highlight_print(info):
    print('')
    print(''.join(['#']*(len(info)+4)))
    print('# '+info+' #')
    print(''.join(['#']*(len(info)+4)))
    print('')

class vd_inference(object):
    def __init__(self, pth='pretrained/vd1.0-four-flow.pth', fp16=False, device=0):
        cfgm_name = 'vd_noema'
        cfgm = model_cfg_bank()('vd_noema')
        device_str = device if isinstance(device, str) else 'cuda:{}'.format(device)
        cfgm.args.autokl_cfg.map_location = device_str
        cfgm.args.optimus_cfg.map_location = device_str
        net = get_model()(cfgm)
        if fp16:
            highlight_print('Running in FP16')
            net.clip.fp16 = True
            net = net.half()
        sd = torch.load(pth, map_location=device_str)
        net.load_state_dict(sd, strict=False)
        print('Load pretrained weight from {}'.format(pth))
        net.to(device)

        self.device = device
        self.model_name = cfgm_name
        self.net = net
        self.fp16 = fp16
        from lib.model_zoo.ddim_vd import DDIMSampler_VD
        self.sampler = DDIMSampler_VD(net)

    def regularize_image(self, x):
        BICUBIC = PIL.Image.Resampling.BICUBIC
        if isinstance(x, str):
            x = Image.open(x).resize([512, 512], resample=BICUBIC)
            x = tvtrans.ToTensor()(x)
        elif isinstance(x, PIL.Image.Image):
            x = x.resize([512, 512], resample=BICUBIC)
            x = tvtrans.ToTensor()(x)
        elif isinstance(x, np.ndarray):
            x = PIL.Image.fromarray(x).resize([512, 512], resample=BICUBIC)
            x = tvtrans.ToTensor()(x)
        elif isinstance(x, torch.Tensor):
            pass
        else:
            assert False, 'Unknown image type'

        assert (x.shape[1]==512) & (x.shape[2]==512), \
            'Wrong image size'
        x = x.to(self.device)
        if self.fp16:
            x = x.half()
        return x

    def decode(self, z, xtype, ctype, color_adj='None', color_adj_to=None):
        net = self.net
        if xtype == 'image':
            x = net.autokl_decode(z)

            color_adj_flag = (color_adj!='none') and (color_adj!='None') and (color_adj is not None)
            color_adj_simple = (color_adj=='Simple') or color_adj=='simple'
            color_adj_keep_ratio = 0.5

            if color_adj_flag and (ctype=='vision'):
                x_adj = []
                for xi in x:
                    color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
                    xi_adj = color_adj_f((xi+1)/2, keep=color_adj_keep_ratio, simple=color_adj_simple)
                    x_adj.append(xi_adj)
                x = x_adj
            else:
                x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
                x = [tvtrans.ToPILImage()(xi) for xi in x]
            return x

        elif xtype == 'text':
            prompt_temperature = 1.0
            prompt_merge_same_adj_word = True
            x = net.optimus_decode(z, temperature=prompt_temperature)
            if prompt_merge_same_adj_word:
                xnew = []
                for xi in x:
                    xi_split = xi.split()
                    xinew = []
                    for idxi, wi in enumerate(xi_split):
                        if idxi!=0 and wi==xi_split[idxi-1]:
                            continue
                        xinew.append(wi)
                    xnew.append(' '.join(xinew))
                x = xnew
            return x

    def inference(self, xtype, cin, ctype, scale=7.5, n_samples=None, color_adj=None,):
        net = self.net
        sampler = self.sampler
        ddim_steps = 50
        ddim_eta = 0.0

        if xtype == 'image':
            n_samples = n_sample_image_default if n_samples is None else n_samples
        elif xtype == 'text':
            n_samples = n_sample_text_default if n_samples is None else n_samples

        if ctype in ['prompt', 'text']:
            c = net.clip_encode_text(n_samples * [cin])
            u = None
            if scale != 1.0:
                u = net.clip_encode_text(n_samples * [""])

        elif ctype in ['vision', 'image']:
            cin = self.regularize_image(cin)
            ctemp = cin*2 - 1
            ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
            c = net.clip_encode_vision(ctemp)
            u = None
            if scale != 1.0:
                dummy = torch.zeros_like(ctemp)
                u = net.clip_encode_vision(dummy)

        u, c = [u.half(), c.half()] if self.fp16 else [u, c]

        if xtype == 'image':
            h, w = [512, 512]
            shape = [n_samples, 4, h//8, w//8]
            z, _ = sampler.sample(
                steps=ddim_steps,
                shape=shape,
                conditioning=c,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=u,
                xtype=xtype, ctype=ctype,
                eta=ddim_eta,
                verbose=False,)
            x = self.decode(z, xtype, ctype, color_adj=color_adj, color_adj_to=cin)
            return x

        elif xtype == 'text':
            n = 768
            shape = [n_samples, n]
            z, _ = sampler.sample(
                steps=ddim_steps,
                shape=shape,
                conditioning=c,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=u,
                xtype=xtype, ctype=ctype,
                eta=ddim_eta,
                verbose=False,)
            x = self.decode(z, xtype, ctype)
            return x

    def application_disensemble(self, cin, n_samples=None, level=0, color_adj=None,):
        net = self.net
        scale = 7.5
        sampler = self.sampler
        ddim_steps = 50
        ddim_eta = 0.0
        n_samples = n_sample_image_default if n_samples is None else n_samples

        cin = self.regularize_image(cin)
        ctemp = cin*2 - 1
        ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
        c = net.clip_encode_vision(ctemp)
        u = None
        if scale != 1.0:
            dummy = torch.zeros_like(ctemp)
            u = net.clip_encode_vision(dummy)
        u, c = [u.half(), c.half()] if self.fp16 else [u, c]

        if level == 0:
            pass
        else:
            c_glb = c[:, 0:1]
            c_loc = c[:, 1: ]
            u_glb = u[:, 0:1]
            u_loc = u[:, 1: ]

            if level == -1:
                c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=1)
                u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=1)
            if level == -2:
                c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=2)
                u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=2)
            if level == 1:
                c_loc = self.find_low_rank(c_loc, demean=True, q=10)
                u_loc = self.find_low_rank(u_loc, demean=True, q=10)
            if level == 2:
                c_loc = self.find_low_rank(c_loc, demean=True, q=2)
                u_loc = self.find_low_rank(u_loc, demean=True, q=2)

            c = torch.cat([c_glb, c_loc], dim=1)
            u = torch.cat([u_glb, u_loc], dim=1)

        h, w = [512, 512]
        shape = [n_samples, 4, h//8, w//8]
        z, _ = sampler.sample(
            steps=ddim_steps,
            shape=shape,
            conditioning=c,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=u,
            xtype='image', ctype='vision',
            eta=ddim_eta,
            verbose=False,)
        x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=cin)
        return x

    def find_low_rank(self, x, demean=True, q=20, niter=10):
        if demean:
            x_mean = x.mean(-1, keepdim=True)
            x_input = x - x_mean
        else:
            x_input = x

        if x_input.dtype == torch.float16:
            fp16 = True
            x_input = x_input.float()
        else:
            fp16 = False

        u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
        ss = torch.stack([torch.diag(si) for si in s])
        x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))        

        if fp16:
            x_lowrank = x_lowrank.half()

        if demean:
            x_lowrank += x_mean
        return x_lowrank

    def remove_low_rank(self, x, demean=True, q=20, niter=10, q_remove=10):
        if demean:
            x_mean = x.mean(-1, keepdim=True)
            x_input = x - x_mean
        else:
            x_input = x

        if x_input.dtype == torch.float16:
            fp16 = True
            x_input = x_input.float()
        else:
            fp16 = False

        u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
        s[:, 0:q_remove] = 0
        ss = torch.stack([torch.diag(si) for si in s])
        x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))        

        if fp16:
            x_lowrank = x_lowrank.half()

        if demean:
            x_lowrank += x_mean
        return x_lowrank

    def application_dualguided(self, cim, ctx, n_samples=None, mixing=0.5, color_adj=None, ):
        net = self.net
        scale = 7.5
        sampler = self.sampler
        ddim_steps = 50
        ddim_eta = 0.0
        n_samples = n_sample_image_default if n_samples is None else n_samples

        ctemp0 = self.regularize_image(cim)
        ctemp1 = ctemp0*2 - 1
        ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
        cim = net.clip_encode_vision(ctemp1)
        uim = None
        if scale != 1.0:
            dummy = torch.zeros_like(ctemp1)
            uim = net.clip_encode_vision(dummy)

        ctx = net.clip_encode_text(n_samples * [ctx])
        utx = None
        if scale != 1.0:
            utx = net.clip_encode_text(n_samples * [""])

        uim, cim = [uim.half(), cim.half()] if self.fp16 else [uim, cim]
        utx, ctx = [utx.half(), ctx.half()] if self.fp16 else [utx, ctx]

        h, w = [512, 512]
        shape = [n_samples, 4, h//8, w//8]

        z, _ = sampler.sample_dc(
            steps=ddim_steps,
            shape=shape,
            first_conditioning=[uim, cim],
            second_conditioning=[utx, ctx],
            unconditional_guidance_scale=scale,
            xtype='image', 
            first_ctype='vision',
            second_ctype='prompt',
            eta=ddim_eta,
            verbose=False,
            mixed_ratio=(1-mixing), )
        x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
        return x

    def application_i2t2i(self, cim, ctx_n, ctx_p, n_samples=None, color_adj=None,):
        net = self.net
        scale = 7.5
        sampler = self.sampler
        ddim_steps = 50
        ddim_eta = 0.0
        prompt_temperature = 1.0
        n_samples = n_sample_image_default if n_samples is None else n_samples

        ctemp0 = self.regularize_image(cim)
        ctemp1 = ctemp0*2 - 1
        ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
        cim = net.clip_encode_vision(ctemp1)
        uim = None
        if scale != 1.0:
            dummy = torch.zeros_like(ctemp1)
            uim = net.clip_encode_vision(dummy)

        uim, cim = [uim.half(), cim.half()] if self.fp16 else [uim, cim]

        n = 768
        shape = [n_samples, n]
        zt, _ = sampler.sample(
            steps=ddim_steps,
            shape=shape,
            conditioning=cim,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uim,
            xtype='text', ctype='vision',
            eta=ddim_eta,
            verbose=False,)
        ztn = net.optimus_encode([ctx_n])
        ztp = net.optimus_encode([ctx_p])

        ztn_norm = ztn / ztn.norm(dim=1)
        zt_proj_mag = torch.matmul(zt, ztn_norm[0])
        zt_perp = zt - zt_proj_mag[:, None] * ztn_norm
        zt_newd = zt_perp + ztp
        ctx_new = net.optimus_decode(zt_newd, temperature=prompt_temperature)

        ctx_new = net.clip_encode_text(ctx_new)
        ctx_p = net.clip_encode_text([ctx_p])
        ctx_new = torch.cat([ctx_new, ctx_p.repeat(n_samples, 1, 1)], dim=1)
        utx_new = net.clip_encode_text(n_samples * [""])
        utx_new = torch.cat([utx_new, utx_new], dim=1)

        cim_loc = cim[:, 1: ]
        cim_loc_new = self.find_low_rank(cim_loc, demean=True, q=10)
        cim_new = cim_loc_new
        uim_new = uim[:, 1:]
        
        h, w = [512, 512]
        shape = [n_samples, 4, h//8, w//8]
        z, _ = sampler.sample_dc(
            steps=ddim_steps,
            shape=shape,
            first_conditioning=[uim_new, cim_new],
            second_conditioning=[utx_new, ctx_new],
            unconditional_guidance_scale=scale,
            xtype='image', 
            first_ctype='vision',
            second_ctype='prompt',
            eta=ddim_eta,
            verbose=False,
            mixed_ratio=0.33, )

        x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
        return x

def main(netwrapper,
         app,
         image=None,
         prompt=None,
         nprompt=None,
         pprompt=None,
         color_adj=None,
         disentanglement_level=None,
         dual_guided_mixing=None,
         n_samples=4,
         seed=0,):

    if seed is not None:
        seed = 0 if seed<0 else seed
        np.random.seed(seed)
        torch.manual_seed(seed+100)

    if app == 'text-to-image':
        print('Running [{}] with prompt [{}], n_samples [{}], seed [{}].'.format(
            app, prompt, n_samples, seed))
        if (prompt is None) or (prompt == ""):
            return None, None
        with torch.no_grad():
            rv = netwrapper.inference(
                xtype = 'image',
                cin = prompt,
                ctype = 'prompt', 
                n_samples = n_samples, )
        return rv, None

    elif app == 'image-variation':
        print('Running [{}] with image [{}], color_adj [{}], n_samples [{}], seed [{}].'.format(
            app, image, color_adj, n_samples, seed))
        if image is None:
            return None, None
        with torch.no_grad():
            rv = netwrapper.inference(
                xtype = 'image',
                cin = image,
                ctype = 'vision',
                color_adj = color_adj,
                n_samples = n_samples, )
        return rv, None

    elif app == 'image-to-text':
        print('Running [{}] with iamge [{}], n_samples [{}], seed [{}].'.format(
            app, image, n_samples, seed))
        if image is None:
            return None, None
        with torch.no_grad():
            rv = netwrapper.inference(
                xtype = 'text',
                cin = image,
                ctype = 'vision',
                n_samples = n_samples, )
        return None, '\n'.join(rv)

    elif app == 'text-variation':
        print('Running [{}] with prompt [{}], n_samples [{}], seed [{}].'.format(
            app, prompt, n_samples, seed))
        if prompt is None:
            return None, None
        with torch.no_grad():
            rv = netwrapper.inference(
                xtype = 'text',
                cin = prompt,
                ctype = 'prompt',
                n_samples = n_samples, )
        return None, '\n'.join(rv)

    elif app == 'disentanglement':
        print('Running [{}] with image [{}], color_adj [{}], disentanglement_level [{}], n_samples [{}], seed [{}].'.format(
            app, image, color_adj, disentanglement_level, n_samples, seed))
        if image is None:
            return None, None
        with torch.no_grad():
            rv = netwrapper.application_disensemble(
                cin = image,
                level = disentanglement_level,
                color_adj = color_adj,
                n_samples = n_samples, )
        return rv, None

    elif app == 'dual-guided':
        print('Running [{}] with image [{}], prompt [{}], color_adj [{}], dual_guided_mixing [{}], n_samples [{}], seed [{}].'.format(
            app, image, prompt, color_adj, dual_guided_mixing, n_samples, seed))
        if (image is None) or (prompt is None) or (prompt==""):
            return None, None
        with torch.no_grad():
            rv = netwrapper.application_dualguided(
                cim = image,
                ctx = prompt,
                mixing = dual_guided_mixing,
                color_adj = color_adj,
                n_samples = n_samples, )
        return rv, None

    elif app == 'i2t2i':
        print('Running [{}] with image [{}], nprompt [{}], pprompt [{}], color_adj [{}], n_samples [{}], seed [{}].'.format(
            app, image, nprompt, pprompt, color_adj, n_samples, seed))
        if (image is None) or (nprompt is None) or (nprompt=="") \
                or (pprompt is None) or (pprompt==""):
            return None, None
        with torch.no_grad():
            rv = netwrapper.application_i2t2i(
                cim = image,
                ctx_n = nprompt,
                ctx_p = pprompt,
                color_adj = color_adj,
                n_samples = n_samples, )
        return rv, None
    
    else:
        assert False, "No such mode!"

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--app", type=str, default="text-to-image",
        help="Choose the application from ["\
             "text-to-image, image-variation, "\
             "image-to-text, text-variation, "\
             "disentanglement, dual-guided, i2t2i]")

    parser.add_argument(
        "--model", type=str, default="official",
        help="Choose the model type from ["\
             "dc, official]")

    parser.add_argument(
        "--prompt", type=str, 
        default="a dream of a village in china, by Caspar "\
                "David Friedrich, matte painting trending on artstation HQ")

    parser.add_argument("--image", type=str)

    parser.add_argument("--nprompt", type=str)

    parser.add_argument("--pprompt", type=str)

    parser.add_argument("--coloradj", type=str, default='simple')

    parser.add_argument("--dislevel", type=int, default=0)

    parser.add_argument("--dgmixing", type=float, default=0.7)

    parser.add_argument("--nsample", type=int, default=4)

    parser.add_argument("--seed", type=int)

    parser.add_argument("--save", type=str, default='log',
        help="The path or file the result will save into")

    parser.add_argument("--gpu", type=int, default=0)

    parser.add_argument("--fp16", action="store_true")

    # parser.add_argument("--pth", type=str, default='pretrained/vd-four-flow-v1-0.pth')

    args = parser.parse_args()

    assert args.app in [
            "text-to-image", "image-variation",
            "image-to-text", "text-variation",
            "disentanglement", "dual-guided", "i2t2i"], \
        "Unknown app! Select from [text-to-image, image-variation, "\
        "image-to-text, text-variation, "\
        "disentanglement, dual-guided, i2t2i]"

    device=args.gpu if torch.cuda.is_available() else 'cpu'

    if args.model in ['4-flow', 'official']:
        if args.fp16:
            pth='pretrained/vd-four-flow-v1-0-fp16.pth'
        else:
            pth='pretrained/vd-four-flow-v1-0.pth'
        vd_wrapper = vd_inference(pth=pth, fp16=args.fp16, device=device)
    elif args.model in ['2-flow', 'dc']:
        raise NotImplementedError
        # vd_wrapper = vd_dc_inference(args.model, pth=args.pth, device=device)
    elif args.model in ['1-flow', 'basic']:
        raise NotImplementedError
        # vd_wrapper = vd_basic_inference(args.model, pth=args.pth, device=device)
    else:
        assert False, "No such model! Select model from [4-flow(official), 2-flow(dc), 1-flow(basic)]"

    imout, txtout = main(
        netwrapper=vd_wrapper,
        app=args.app,
        image=args.image,
        prompt=args.prompt,
        nprompt=args.nprompt,
        pprompt=args.pprompt,
        color_adj=args.coloradj,
        disentanglement_level=args.dislevel,
        dual_guided_mixing=args.dgmixing,
        n_samples=args.nsample,
        seed=args.seed,)

    if imout is not None:
        imout = auto_merge_imlist([np.array(i) for i in imout])
        imout = PIL.Image.fromarray(imout)
        if osp.isdir(args.save):
            imout.save(osp.join(args.save, 'imout.png'))
            print('Output image saved to {}.'.format(osp.join(args.save, 'imout.png')))
        else:
            imout.save(osp.join(args.save))
            print('Output image saved to {}.'.format(args.save))
    
    if txtout is not None:
        print(txtout)