File size: 6,465 Bytes
46a8d8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import numpy as np
import imageio
import os
import time
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from data import set_up_data
from utils import get_cpu_stats_over_ranks
from train_helpers import set_up_hyperparams, load_vaes, load_opt, accumulate_stats, save_model, update_ema
def training_step(H, data_input, target, vae, ema_vae, optimizer, iterate):
t0 = time.time()
vae.zero_grad()
stats = vae.forward(data_input, target)
stats['elbo'].backward()
grad_norm = torch.nn.utils.clip_grad_norm_(vae.parameters(), H.grad_clip).item()
distortion_nans = torch.isnan(stats['distortion']).sum()
rate_nans = torch.isnan(stats['rate']).sum()
stats.update(dict(rate_nans=0 if rate_nans == 0 else 1, distortion_nans=0 if distortion_nans == 0 else 1))
stats = get_cpu_stats_over_ranks(stats)
skipped_updates = 1
# only update if no rank has a nan and if the grad norm is below a specific threshold
if stats['distortion_nans'] == 0 and stats['rate_nans'] == 0 and (H.skip_threshold == -1 or grad_norm < H.skip_threshold):
optimizer.step()
skipped_updates = 0
update_ema(vae, ema_vae, H.ema_rate)
t1 = time.time()
stats.update(skipped_updates=skipped_updates, iter_time=t1 - t0, grad_norm=grad_norm)
return stats
def eval_step(data_input, target, ema_vae):
with torch.no_grad():
stats = ema_vae.forward(data_input, target)
stats = get_cpu_stats_over_ranks(stats)
return stats
def get_sample_for_visualization(data, preprocess_fn, num, dataset):
for x in DataLoader(data, batch_size=num):
break
orig_image = (x[0] * 255.0).to(torch.uint8).permute(0, 2, 3, 1) if dataset == 'ffhq_1024' else x[0]
preprocessed = preprocess_fn(x)[0]
return orig_image, preprocessed
def train_loop(H, data_train, data_valid, preprocess_fn, vae, ema_vae, logprint):
optimizer, scheduler, cur_eval_loss, iterate, starting_epoch = load_opt(H, vae, logprint)
train_sampler = DistributedSampler(data_train, num_replicas=H.mpi_size, rank=H.rank)
viz_batch_original, viz_batch_processed = get_sample_for_visualization(data_valid, preprocess_fn, H.num_images_visualize, H.dataset)
early_evals = set([1] + [2 ** exp for exp in range(3, 14)])
stats = []
iters_since_starting = 0
H.ema_rate = torch.as_tensor(H.ema_rate).cuda()
for epoch in range(starting_epoch, H.num_epochs):
train_sampler.set_epoch(epoch)
for x in DataLoader(data_train, batch_size=H.n_batch, drop_last=True, pin_memory=True, sampler=train_sampler):
data_input, target = preprocess_fn(x)
training_stats = training_step(H, data_input, target, vae, ema_vae, optimizer, iterate)
stats.append(training_stats)
scheduler.step()
if iterate % H.iters_per_print == 0 or iters_since_starting in early_evals:
logprint(model=H.desc, type='train_loss', lr=scheduler.get_last_lr()[0], epoch=epoch, step=iterate, **accumulate_stats(stats, H.iters_per_print))
if iterate % H.iters_per_images == 0 or (iters_since_starting in early_evals and H.dataset != 'ffhq_1024') and H.rank == 0:
write_images(H, ema_vae, viz_batch_original, viz_batch_processed, f'{H.save_dir}/samples-{iterate}.png', logprint)
iterate += 1
iters_since_starting += 1
if iterate % H.iters_per_save == 0 and H.rank == 0:
if np.isfinite(stats[-1]['elbo']):
logprint(model=H.desc, type='train_loss', epoch=epoch, step=iterate, **accumulate_stats(stats, H.iters_per_print))
fp = os.path.join(H.save_dir, 'latest')
logprint(f'Saving model@ {iterate} to {fp}')
save_model(fp, vae, ema_vae, optimizer, H)
if iterate % H.iters_per_ckpt == 0 and H.rank == 0:
save_model(os.path.join(H.save_dir, f'iter-{iterate}'), vae, ema_vae, optimizer, H)
if epoch % H.epochs_per_eval == 0:
valid_stats = evaluate(H, ema_vae, data_valid, preprocess_fn)
logprint(model=H.desc, type='eval_loss', epoch=epoch, step=iterate, **valid_stats)
def evaluate(H, ema_vae, data_valid, preprocess_fn):
stats_valid = []
valid_sampler = DistributedSampler(data_valid, num_replicas=H.mpi_size, rank=H.rank)
for x in DataLoader(data_valid, batch_size=H.n_batch, drop_last=True, pin_memory=True, sampler=valid_sampler):
data_input, target = preprocess_fn(x)
stats_valid.append(eval_step(data_input, target, ema_vae))
vals = [a['elbo'] for a in stats_valid]
finites = np.array(vals)[np.isfinite(vals)]
stats = dict(n_batches=len(vals), filtered_elbo=np.mean(finites), **{k: np.mean([a[k] for a in stats_valid]) for k in stats_valid[-1]})
return stats
def write_images(H, ema_vae, viz_batch_original, viz_batch_processed, fname, logprint):
zs = [s['z'].cuda() for s in ema_vae.forward_get_latents(viz_batch_processed)]
batches = [viz_batch_original.numpy()]
mb = viz_batch_processed.shape[0]
lv_points = np.floor(np.linspace(0, 1, H.num_variables_visualize + 2) * len(zs)).astype(int)[1:-1]
for i in lv_points:
batches.append(ema_vae.forward_samples_set_latents(mb, zs[:i], t=0.1))
for t in [1.0, 0.9, 0.8, 0.7][:H.num_temperatures_visualize]:
batches.append(ema_vae.forward_uncond_samples(mb, t=t))
n_rows = len(batches)
im = np.concatenate(batches, axis=0).reshape((n_rows, mb, *viz_batch_processed.shape[1:])).transpose([0, 2, 1, 3, 4]).reshape([n_rows * viz_batch_processed.shape[1], mb * viz_batch_processed.shape[2], 3])
logprint(f'printing samples to {fname}')
imageio.imwrite(fname, im)
def run_test_eval(H, ema_vae, data_test, preprocess_fn, logprint):
print('evaluating')
stats = evaluate(H, ema_vae, data_test, preprocess_fn)
print('test results')
for k in stats:
print(k, stats[k])
logprint(type='test_loss', **stats)
def main():
H, logprint = set_up_hyperparams()
H, data_train, data_valid_or_test, preprocess_fn = set_up_data(H)
vae, ema_vae = load_vaes(H, logprint)
if H.test_eval:
run_test_eval(H, ema_vae, data_valid_or_test, preprocess_fn, logprint)
else:
train_loop(H, data_train, data_valid_or_test, preprocess_fn, vae, ema_vae, logprint)
if __name__ == "__main__":
main()
|