Dataset Viewer
Auto-converted to Parquet
study_ID
stringlengths
6
18
platform
stringclasses
3 values
platform_detail
stringlengths
36
108
study_type
stringclasses
3 values
pathogen
stringclasses
8 values
vaccine
stringlengths
4
31
βŒ€
tissue
stringclasses
5 values
raw_data
stringclasses
2 values
antibody
stringclasses
2 values
num_subjects
int64
5
271
num_observations
int64
12
880
num_cells
float64
49.8k
647k
βŒ€
meta_variable_list
stringlengths
20
254
E_MTAB_12993_nose
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
inoculation
SARS-CoV-2
null
nasal swab
no
no
19
96
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;study_group;sex;age
E_MTAB_12993_blood
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
inoculation
SARS-CoV-2
null
whole blood
no
no
35
374
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;study_group;sex;age
GSE11348
microarray
GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
inoculation
HRV
null
nasal swab
yes
no
31
93
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;study_group;sex;age;sham
GSE61754
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
inoculation
H3N2
null
whole blood
yes
no
22
88
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;symptom_group_original;study_group;seroconversion;viral_shedding
GSE90732
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
inoculation
H1N1
null
whole blood
yes
no
21
108
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;Total_DSS;study_group;sex;age
GSE155237
RNA-seq
GPL16791; Illumina HiSeq 2500 (Homo sapiens)
inoculation
RSV
null
nasal swab
yes
no
40
78
null
geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint;infection_group;symptom_group
GSE73072_H1N1_DEE4
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
H1N1
null
whole blood
yes
no
19
386
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group
GSE73072_H1N1_DEE3
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
H1N1
null
whole blood
yes
no
24
477
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group
GSE73072_H3N2_DEE2
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
H3N2
null
whole blood
yes
no
17
355
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group
GSE73072_H3N2_DEE5
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
H3N2
null
whole blood
yes
no
21
482
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group
GSE73072_HRV_DUKE
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
HRV
null
whole blood
yes
no
27
471
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;sham
GSE73072_HRV_UVA
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
HRV
null
whole blood
yes
no
20
295
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group
GSE73072_RSV_DEE1
microarray
GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG]
inoculation
RSV
null
whole blood
yes
no
20
420
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group
GSE68310
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
mixed exposure
influenza_A_virus; influenza_B_virus; enterovirus; human_coronavirus; human_rhinovirus; respiratory_syncytial_virus
null
whole blood
yes
yes
133
880
null
geo_accession;ID;study_ID;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;sex;age;Medications;Duration_of_symptoms
GSE194378
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
mixed exposure
influenza
Influenza QIV
whole blood
yes
yes
75
412
null
geo_accession;ID;study_ID;tissue;platform;title;timepoint;MFC;responder;study_group;vaccine;sex;age;ethnicity;race;symptom_group_previous_covid;side_effect;Duration_of_symptoms;days.since.covid.19.diagnosis;influenza.vaccination.count..previous.10.years.
GSE117580
RNA-seq
GPL20301; Illumina HiSeq 4000 (Homo sapiens)
mixed exposure
influenza
Influenza LAIV/TIV
nasal swab
yes
no
35
96
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine
GSE74811
microarray
GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate
vaccine
influenza
Influenza TIV
whole blood
yes
yes
28
83
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;vaccine
GSE74813
microarray
GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate
vaccine
influenza
Influenza TIV
whole blood
yes
yes
63
286
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;vaccine;sex;age;race
GSE74815
microarray
GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate
vaccine
influenza
Influenza TIV
whole blood
yes
yes
26
75
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;vaccine
GSE74816
microarray
GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate
vaccine
influenza
Influenza TIV
whole blood
yes
yes
72
177
null
geo_accession;ID;tissue;pathogen;title;timepoint;MFC;responder;study_group;Enrollment_year;sex;age
GSE48023
microarray
GPL10558; Illumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
whole blood
yes
yes
110
417
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age
GSE48018
microarray
GPL6947; Illumina HumanHT-12 V3.0 expression beadchip
vaccine
influenza
Influenza TIV
whole blood
yes
yes
116
431
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age
GSE41080
microarray
GPL6947; Illumina HumanHT-12 V3.0 expression beadchip
vaccine
influenza
Influenza TIV
whole blood
yes
yes
91
91
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;BMI
GSE59743
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
PBMC
yes
yes
30
120
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;responder_original;vaccine;age_group;immport_expsamp_acc
GSE59654
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
PBMC
yes
yes
39
156
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;responder_original;vaccine;age_group;immport_expsamp_acc
GSE101709
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
PBMC
yes
yes
26
98
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;age_group;immport_expsamp_acc
GSE59635
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
PBMC
yes
yes
19
72
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;responder_original;vaccine;age_group;immport_expsamp_acc
GSE101710
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
PBMC
yes
yes
20
79
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;age_group;immport_expsamp_acc
GSE47353
microarray
GPL6244; [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]
vaccine
influenza
Influenza TIV
PBMC
yes
yes
63
292
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity
GSE190001_PRIME
RNA-seq
GPL30296; Illumina Hiseq 4000 (Homo sapiens)
vaccine
SARS-CoV-2
Pfizer BioNTech/ Moderna
whole blood
yes
yes
23
213
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;vaccine_dose;sex;age;ethnicity;PreviousCOVID19;UnderlyingDisease;turbo_reatment;Medications;side_effect
GSE190001_BOOST
RNA-seq
GPL30296; Illumina Hiseq 4000 (Homo sapiens)
vaccine
SARS-CoV-2
Pfizer BioNTech/ Moderna
whole blood
yes
yes
23
226
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;vaccine_dose;sex;age;ethnicity;PreviousCOVID19;UnderlyingDisease;turbo_reatment;Medications;side_effect
SDY311
microarray
GPL6947; Illumina HumanHT-12 V3.0 expression beadchip
vaccine
influenza
Influenza TIV
whole blood
yes
yes
63
73
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;Expsample.Accession;ethnicity;race
SDY112
microarray
GPL6947; Illumina HumanHT-12 V3.0 expression beadchip
vaccine
influenza
Influenza TIV
whole blood
yes
yes
89
89
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity;race
SDY315
microarray
GPL6947; Illumina HumanHT-12 V3.0 expression beadchip
vaccine
influenza
Influenza TIV
whole blood
yes
yes
71
71
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity;race
GSE207750
RNA-seq
GPL24676; llumina NovaSeq 6000 (Homo sapiens)
vaccine
influenza
Influenza TIV
whole blood
no
yes
271
271
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;MFC;responder;study_group;vaccine;sex;age;race_ethnicity;BMI;Vaccinated.in.prior.3.seasons;Height_cm;Weight_kg;Current.smoker;Prior.smoker;Sleep.apnea
GSE246525
RNA-seq
GPL28038; DNBSEQ-G400 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
whole blood
yes
yes
10
38
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;responder_original;vaccine;sex
GSE201533
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/BNT162b2
PBMC
yes
yes
43
161
null
geo_accession;ID;study_ID;tissue;platform;title;timepoint;vaccine_dose;sex;age;BMI
GSE190747
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
PBMC
yes
yes
30
115
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;BMI;UnderlyingDisease;side_effect
GSE199750
RNA-seq
GPL28038; DNBSEQ-G400 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/BNT162b2
whole blood
yes
yes
86
260
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint_group;MFC;responder;vaccine;sex;age
GSE220682
RNA-seq
GPL18573; Illumina NextSeq 500 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
PBMC
yes
no
203
705
null
geo_accession;study_ID;tissue;platform;pathogen;batch;title;timepoint;vaccine
GSE228839
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/MenACWY
whole blood
no
no
100
170
null
geo_accession;ID;study_ID;tissue;platform;title;timepoint_group;study_group;vaccine;sex;age
GSE276544
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/BNT162b2/MVA/mRNA-1273
whole blood
yes
no
43
305
null
geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint_group;vaccine
GSE209985
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
PBMC
yes
no
32
188
null
geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint;study_group;vaccine;vaccine_dose;sex;age;PreviousCOVID19;diabetes
GSE247401
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/BNT162b2/mRNA-1273
whole blood
yes
no
17
50
null
geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint;vaccine;sex
GSE265975
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
PBMC
yes
no
29
100
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;timepoint_group;study_group;vaccine
GSE169159
RNA-seq
GPL15520; Illumina MiSeq (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
whole blood
yes
yes
32
185
null
geo_accession;ID;study_ID;tissue;platform;title;timepoint;MFC;responder;vaccine;vaccine_dose;sex;age
GSE102012
microarray
GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate
vaccine
influenza
H5N1
whole blood
yes
no
50
384
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine
GSE217770
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
influenza
Influenza LAIV
whole blood
yes
no
53
371
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;sex
GSE230494
RNA-seq
GPL18573; Illumina NextSeq 500 (Homo sapiens)
vaccine
influenza
Influenza LAIV
nasal swab
yes
no
39
60
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine
GSE29614
microarray
GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
vaccine
influenza
Influenza TIV
PBMC
yes
yes
9
27
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine
GSE29615
microarray
GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
vaccine
influenza
Influenza LAIV
PBMC
yes
yes
28
83
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine
GSE29617
microarray
GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
vaccine
influenza
Influenza TIV
PBMC
yes
yes
28
80
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine
GSE52005
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza LAIV/TIV
whole blood
yes
no
38
140
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;sex;age;race
GSE48762
microarray
GPL6947; Illumina HumanHT-12 V3.0 expression beadchip
vaccine
influenza/pneumococcal
Influenza TIV/Saline/Pneumovax
whole blood
yes
yes
34
621
null
geo_accession;ID;study_ID;tissue;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;immport_expsamp_acc;ethnicity;race
GSE107990
microarray
GPL10558; llumina HumanHT-12 V4.0 expression beadchip
vaccine
influenza
Influenza TIV
PBMC
yes
no
172
671
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;sex;age;ethnicity
GSE45735
RNA-seq
GPL10999; Illumina Genome Analyzer IIx (Homo sapiens)
vaccine
influenza
Influenza TIV
PBMC
yes
yes
5
54
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity;race
GSE281864
RNA-seq
GPL20301; Illumina HiSeq 4000 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
whole blood
yes
no
17
193
null
geo_accession;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;vaccine_dose
GSE201642
RNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/BNT162b2
PBMC
yes
yes
15
48
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;study_group;vaccine;sex;age;UnderlyingDisease
GSE250023
RNA-seq
GPL28038; DNBSEQ-G400 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
whole blood
yes
yes
18
75
null
geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;responder_original;vaccine;sex;UnderlyingDisease
challenge_covid19
scRNA-seq
Illumina NovaSeq 6000 (Homo sapiens)
inoculation
SARS-CoV-2
null
PBMC
no
yes
16
144
606,074
List in the h5ad obs
EMTAB10026
scRNA-seq
Illumina NovaSeq 6000 (Homo sapiens)
inoculation
SARS-CoV-2
null
PBMC
no
no
130
143
647,366
List in the h5ad obs
eskd_covid19
scRNA-seq
Illumina NovaSeq 6000 (Homo sapiens)
mixed exposure
SARS-CoV-2
null
nasal swab/PBMC
no
no
61
187
588,389
List in the h5ad obs
GSE201534
scRNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
ChAdOx1/BNT162b2
PBMC
no
no
6
12
87,160
List in the h5ad obs
GSE247917
scRNA-seq
GPL18573; Illumina NextSeq 500 (Homo sapiens)/GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
PBMC
no
no
14
54
195,489
List in the h5ad obs
GSE195673
scRNA-seq
GPL24676; Illumina NovaSeq 6000 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b2
PBMC/Lymph Node
no
no
8
56
383,635
List in the h5ad obs
GSE246937
scRNA-seq
GPL21697; NextSeq 550 (Homo sapiens)
vaccine
SARS-CoV-2
BNT162b
whole blood
no
yes
10
25
49,829
List in the h5ad obs

HR-VILAGE-3K3M: Human Respiratory Viral Immunization Longitudinal Gene Expression

This repository provides the HR-VILAGE-3K3M dataset, a curated collection of human longitudinal gene expression profiles, antibody measurements, and aligned metadata from respiratory viral immunization and infection studies. The dataset includes baseline transcriptomic profiles and covers diverse exposure types (vaccination, inoculation, and mixed exposure). HR-VILAGE-3K3M is designed as a benchmark resource to support the development and evaluation of deep learning models for longitudinal gene expression analysis and to facilitate research into the temporal dynamics of immune responses.

Flowchart Fig: Overview of HR-VILAGE-3K3M. (a) HR-VILAGE-3K3M construction workflow. (b) Distribution of sample timepoints for vaccine and inoculation studies, , shown separately for bulk RNA-seq and single-cell RNA-seq datasets. (c) Composition of the dataset, stratified by platform, tissue type, study type, and pathogen, including both bulk and single-cell transcriptomic studies.

Dataset Description:

  • This repo contains 66 studies (59 bulk and 7 single cell studies), comprising 3178 subjects and 14,136 observations along with 2,557,942 single cells.
  • We provide preprocessed and normalized gene expression data, raw gene expression data, metadata and antibody data.

Data Structure:

HR-VILAGE-3K3M/
β”œβ”€β”€ README.md
β”œβ”€β”€ study_meta.csv
β”œβ”€β”€ bulk_gene_expr/
β”‚    └── <study_ID>_gene_expr.csv
β”œβ”€β”€ singel_cell_gene_expr/
β”‚    └── <study_ID>.h5ad
β”œβ”€β”€ meta/
β”‚    └── <study_ID>_meta.csv
β”œβ”€β”€ bulk_gene_expr_raw/
β”‚    └── <study_ID>_raw.csv
└── antibody/
     └── <study_ID>_antibody.csv
  • study_meta.csv: Contains study-level metadata (e.g., platform, tissue type, study type) and serves as an overview of the repository. Users can use this file to filter and select a subset of studies based on custom criteria.
  • bulk_gene_expr/: Processed gene expression matrices for each study (sample-by-gene). All files share the same 41,667 gene columns, with 9,004 genes non-missing across all studies.
  • singel_cell_gene_expr/: Processed single cell gene expression matrices for each study in h5ad format. Raw count matrices are stored in the .X attribute, and cell-level metadata is stored in the .obs dataframe.
  • meta/: Study-specific metadata files (.csv), aligned by row names with the corresponding expression data. All metadata files share the same column structure; missing values are marked as NA.
  • bulk_gene_expr_raw/: Raw probe-level expression matrices (probe-by-sample), provided when available to support custom preprocessing workflows.
  • antibody/: Raw antibody measurements with sample IDs matching those in the metadata, enabling integration with gene expression data at the subject level.

How to start:

Users could directly download all files and read files locally.

Alternatively, the following provides (partially) loading the dataset into Python using dataset package.

repo_id = "xuejun72/HR-VILAGE-3K3M"
import pandas as pd
from datasets import load_dataset

Bulk gene expression data

Bulk gene expression data can be loaded and combined using two alternative approaches.

  1. Use our predefined configuration name, and pass to name argument in load_dataset(). trust_remote_code=True and revision="script" are required.

    Example 1, to download study_meta:

    study_meta = load_dataset(repo_id, name="study_meta", trust_remote_code=True, revision="script")["train"].to_pandas()
    

    Example 2, to download and combine all meta datasets:

    meta_dict = load_dataset(repo_id, name = "meta", trust_remote_code=True, revision="script")
    meta = meta_dict["train"].to_pandas()
    

    Example 3, to download and combine all bulk gene expression datasets. However, this is highly NOT recommended since their size are too large and the execution time will be long.

    # Not recommended!
    gene_expr_dict = load_dataset(repo_id, name = "bulk_gene_expr", trust_remote_code=True, revision="script")
    

    In addition, we provide a study filter function before downloading and loading, which works for meta and bulk gene expression datasets. split_filter argument is designed for this filter, which is optional. By default, split_filter=None will download all datasets as shown before. split_filter is a dict Python object where key is filter factors taking values from ['study_type','platform','tissue','pathogen','vaccine'] and value is a list of categories for each key. value should be exact same as that in study_meta.csv. Some examples of a valid split_filter:

    split_filter = {"study_type": ["inoculation","inoculation"]}
    split_filter = {"study_type": ["vaccine"], "vaccine": ["Influenza TIV"]}
    split_filter = {"study_type": ["vaccine"], "platform": ["RNA-seq"], "tissue": ["PBMC","nasal swab"], "pathogen": []}
    

    Example 4, to download and combine a customized filtered meta dataset:

    split_filter = {"study_type": ["vaccine"], "platform": ["RNA-seq"], "tissue": ["PBMC","nasal swab"], "pathogen": []}
    meta_filtered_dict = load_dataset(repo_id, name = "meta", trust_remote_code=True, split_filter=split_filter, revision="script")
    for _, value in meta_filtered_dict.items(): 
      meta_filtered = value.to_pandas().set_index("row_name")
    meta_filtered
    

    Example 5, to download and combine a customized filtered bulk gene expression dataset:

    split_filter = {"study_type": ["vaccine"], "platform": ["RNA-seq"], "tissue": ["PBMC","nasal swab"], "pathogen": []}
    gene_expr_filtered_dict = load_dataset(repo_id, name = "bulk_gene_expr", trust_remote_code=True, split_filter=split_filter, revision="script")
    gene_names = gene_expr_filtered_dict["gene_expr_colnames"][0]["gene_names"]
    all_row_names = []
    all_matrix = []
    for batch in next(iter(gene_expr_filtered_dict.items()))[1]:
      all_row_names.extend(batch["row_names"])
      all_matrix.extend(batch["matrix"])
    gene_expr_filtered = pd.DataFrame(all_matrix, index=all_row_names, columns=gene_names)
    gene_expr_filtered
    
  2. Use exact path of one csv file, and pass to data_files argument in load_dataset().

    Example 1, to download study_meta:

    study_meta = load_dataset(repo_id, data_files = "study_meta.csv")["train"].to_pandas()
    

    Example 2, to download antibody dataset for GSE194378:

    antibody = load_dataset(repo_id, data_files = "antibody/GSE194378_antibody.csv")["train"].to_pandas()
    

    Example 3, to download raw gene expression dataset for GSE194378:

    raw = load_dataset(repo_id, data_files = "bulk_gene_expr_raw/GSE194378_raw.csv")["train"].to_pandas()
    

    Note: for antibody and raw gene expression datasets, since different study has different columns which cannot be simply combined, loading them must using data_files argument and be one-by-one.

Single cell gene expression data

Single-cell gene expression data can be downloaded and accessed using the anndata package.

  import anndata as ad
  # Load the GSE195673 dataset
  GSE195673 = ad.read_h5ad("./GSE195673_processed.h5ad")
  # View cell-level metadata
  GSE195673.obs

A merged dataset containing all 7 studies is also provided, comprising 2,557,942 cells and 13,589 common genes:

  import anndata as ad
  # Load the combined dataset
  combined = ad.read_h5ad("./combined.h5ad")
  # View cell-level metadata
  combined.obs

The combined object includes detailed cell-level metadata such as sample_id, cell_type, sex, donor_id, time_point_day, dataset, covid_status, age, tissue, and study_type. It also contains dimensionality reductions (X_pca, X_umap) and graph-based neighbor information in obsp for downstream analysis.

Example code:

The codes for data processing and reproducing evaluation results in the paper are in Document.

Data Relations:

The following duplicate studies (right nodes) are not included in HR-VILAGE-3K3M, while their source studies (left leaves) are included in HR-VILAGE-3K3M.

GSE73072_H3N2_DEE2 ──┐
                      β”œβ”€β”€ GSE52428
GSE73072_H1N1_DEE4 β”€β”€β”˜

GSE73072_H3N2_DEE2    β”œβ”€β”€ GSE30550

GSE73072_HRV_UVA   ──┐
GSE73072_RSV_DEE1  ── β”œβ”€β”€ GSE17156
GSE73072_H3N2_DEE2 β”€β”€β”˜

The studies grouped below originate from the same research group and were typically processed using consistent experimental and technical pipelines. Consequently, these studies are expected to exhibit minimal batch effects compared to those conducted independently. We provide this grouping information to assist users interested in pooling data across studiesβ€”combining studies from the same group can help mitigate confounding technical variability and enhance statistical power in downstream analyses such as differential expression. Notably, GSE201533 and GSE201534 represent paired bulk RNA-seq and single-cell RNA-seq data from the same subjects, while GSE246937 is paired with GSE246525, offering a valuable opportunity for multi-resolution analyses. Study relation

How to cite:

@misc{sun2025hrvilage3k3mhumanrespiratoryviral,
      title={HR-VILAGE-3K3M: A Human Respiratory Viral Immunization Longitudinal Gene Expression Dataset for Systems Immunity}, 
      author={Xuejun Sun and Yiran Song and Xiaochen Zhou and Ruilie Cai and Yu Zhang and Xinyi Li and Rui Peng and Jialiu Xie and Yuanyuan Yan and Muyao Tang and Prem Lakshmanane and Baiming Zou and James S. Hagood and Raymond J. Pickles and Didong Li and Fei Zou and Xiaojing Zheng},
      year={2025},
      eprint={2505.14725},
      archivePrefix={arXiv},
      primaryClass={q-bio.GN},
      url={https://arxiv.org/abs/2505.14725}, 
}
Downloads last month
5,723