study_ID
stringlengths 6
18
| platform
stringclasses 3
values | platform_detail
stringlengths 36
108
| study_type
stringclasses 3
values | pathogen
stringclasses 8
values | vaccine
stringlengths 4
31
β | tissue
stringclasses 5
values | raw_data
stringclasses 2
values | antibody
stringclasses 2
values | num_subjects
int64 5
271
| num_observations
int64 12
880
| num_cells
float64 49.8k
647k
β | meta_variable_list
stringlengths 20
254
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
E_MTAB_12993_nose | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | inoculation | SARS-CoV-2 | null | nasal swab | no | no | 19 | 96 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;study_group;sex;age |
E_MTAB_12993_blood | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | inoculation | SARS-CoV-2 | null | whole blood | no | no | 35 | 374 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;study_group;sex;age |
GSE11348 | microarray | GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array | inoculation | HRV | null | nasal swab | yes | no | 31 | 93 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;study_group;sex;age;sham |
GSE61754 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | inoculation | H3N2 | null | whole blood | yes | no | 22 | 88 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;symptom_group_original;study_group;seroconversion;viral_shedding |
GSE90732 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | inoculation | H1N1 | null | whole blood | yes | no | 21 | 108 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;Total_DSS;study_group;sex;age |
GSE155237 | RNA-seq | GPL16791; Illumina HiSeq 2500 (Homo sapiens) | inoculation | RSV | null | nasal swab | yes | no | 40 | 78 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint;infection_group;symptom_group |
GSE73072_H1N1_DEE4 | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | H1N1 | null | whole blood | yes | no | 19 | 386 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group |
GSE73072_H1N1_DEE3 | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | H1N1 | null | whole blood | yes | no | 24 | 477 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group |
GSE73072_H3N2_DEE2 | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | H3N2 | null | whole blood | yes | no | 17 | 355 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group |
GSE73072_H3N2_DEE5 | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | H3N2 | null | whole blood | yes | no | 21 | 482 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group |
GSE73072_HRV_DUKE | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | HRV | null | whole blood | yes | no | 27 | 471 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group;sham |
GSE73072_HRV_UVA | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | HRV | null | whole blood | yes | no | 20 | 295 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group |
GSE73072_RSV_DEE1 | microarray | GPL14604; Affymetrix GeneChip Human Genome U133A 2.0 Array [CDF: Brainarray Version 10, Hs133Av2_Hs_ENTREZG] | inoculation | RSV | null | whole blood | yes | no | 20 | 420 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;infection_group;symptom_group |
GSE68310 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | mixed exposure | influenza_A_virus; influenza_B_virus; enterovirus; human_coronavirus; human_rhinovirus; respiratory_syncytial_virus | null | whole blood | yes | yes | 133 | 880 | null | geo_accession;ID;study_ID;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;sex;age;Medications;Duration_of_symptoms |
GSE194378 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | mixed exposure | influenza | Influenza QIV | whole blood | yes | yes | 75 | 412 | null | geo_accession;ID;study_ID;tissue;platform;title;timepoint;MFC;responder;study_group;vaccine;sex;age;ethnicity;race;symptom_group_previous_covid;side_effect;Duration_of_symptoms;days.since.covid.19.diagnosis;influenza.vaccination.count..previous.10.years. |
GSE117580 | RNA-seq | GPL20301; Illumina HiSeq 4000 (Homo sapiens) | mixed exposure | influenza | Influenza LAIV/TIV | nasal swab | yes | no | 35 | 96 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine |
GSE74811 | microarray | GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 28 | 83 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;vaccine |
GSE74813 | microarray | GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 63 | 286 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;vaccine;sex;age;race |
GSE74815 | microarray | GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 26 | 75 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;Enrollment_year;vaccine |
GSE74816 | microarray | GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 72 | 177 | null | geo_accession;ID;tissue;pathogen;title;timepoint;MFC;responder;study_group;Enrollment_year;sex;age |
GSE48023 | microarray | GPL10558; Illumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 110 | 417 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age |
GSE48018 | microarray | GPL6947; Illumina HumanHT-12 V3.0 expression beadchip | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 116 | 431 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age |
GSE41080 | microarray | GPL6947; Illumina HumanHT-12 V3.0 expression beadchip | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 91 | 91 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;BMI |
GSE59743 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 30 | 120 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;responder_original;vaccine;age_group;immport_expsamp_acc |
GSE59654 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 39 | 156 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;responder_original;vaccine;age_group;immport_expsamp_acc |
GSE101709 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 26 | 98 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;age_group;immport_expsamp_acc |
GSE59635 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 19 | 72 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;responder_original;vaccine;age_group;immport_expsamp_acc |
GSE101710 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 20 | 79 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;age_group;immport_expsamp_acc |
GSE47353 | microarray | GPL6244; [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array [transcript (gene) version] | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 63 | 292 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity |
GSE190001_PRIME | RNA-seq | GPL30296; Illumina Hiseq 4000 (Homo sapiens) | vaccine | SARS-CoV-2 | Pfizer BioNTech/ Moderna | whole blood | yes | yes | 23 | 213 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;vaccine_dose;sex;age;ethnicity;PreviousCOVID19;UnderlyingDisease;turbo_reatment;Medications;side_effect |
GSE190001_BOOST | RNA-seq | GPL30296; Illumina Hiseq 4000 (Homo sapiens) | vaccine | SARS-CoV-2 | Pfizer BioNTech/ Moderna | whole blood | yes | yes | 23 | 226 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;vaccine_dose;sex;age;ethnicity;PreviousCOVID19;UnderlyingDisease;turbo_reatment;Medications;side_effect |
SDY311 | microarray | GPL6947; Illumina HumanHT-12 V3.0 expression beadchip | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 63 | 73 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;Expsample.Accession;ethnicity;race |
SDY112 | microarray | GPL6947; Illumina HumanHT-12 V3.0 expression beadchip | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 89 | 89 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity;race |
SDY315 | microarray | GPL6947; Illumina HumanHT-12 V3.0 expression beadchip | vaccine | influenza | Influenza TIV | whole blood | yes | yes | 71 | 71 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity;race |
GSE207750 | RNA-seq | GPL24676; llumina NovaSeq 6000 (Homo sapiens) | vaccine | influenza | Influenza TIV | whole blood | no | yes | 271 | 271 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;MFC;responder;study_group;vaccine;sex;age;race_ethnicity;BMI;Vaccinated.in.prior.3.seasons;Height_cm;Weight_kg;Current.smoker;Prior.smoker;Sleep.apnea |
GSE246525 | RNA-seq | GPL28038; DNBSEQ-G400 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | whole blood | yes | yes | 10 | 38 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;responder_original;vaccine;sex |
GSE201533 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/BNT162b2 | PBMC | yes | yes | 43 | 161 | null | geo_accession;ID;study_ID;tissue;platform;title;timepoint;vaccine_dose;sex;age;BMI |
GSE190747 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | PBMC | yes | yes | 30 | 115 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;BMI;UnderlyingDisease;side_effect |
GSE199750 | RNA-seq | GPL28038; DNBSEQ-G400 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/BNT162b2 | whole blood | yes | yes | 86 | 260 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint_group;MFC;responder;vaccine;sex;age |
GSE220682 | RNA-seq | GPL18573; Illumina NextSeq 500 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | PBMC | yes | no | 203 | 705 | null | geo_accession;study_ID;tissue;platform;pathogen;batch;title;timepoint;vaccine |
GSE228839 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/MenACWY | whole blood | no | no | 100 | 170 | null | geo_accession;ID;study_ID;tissue;platform;title;timepoint_group;study_group;vaccine;sex;age |
GSE276544 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/BNT162b2/MVA/mRNA-1273 | whole blood | yes | no | 43 | 305 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint_group;vaccine |
GSE209985 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | PBMC | yes | no | 32 | 188 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint;study_group;vaccine;vaccine_dose;sex;age;PreviousCOVID19;diabetes |
GSE247401 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/BNT162b2/mRNA-1273 | whole blood | yes | no | 17 | 50 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;batch;title;timepoint;vaccine;sex |
GSE265975 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | PBMC | yes | no | 29 | 100 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;timepoint_group;study_group;vaccine |
GSE169159 | RNA-seq | GPL15520; Illumina MiSeq (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | whole blood | yes | yes | 32 | 185 | null | geo_accession;ID;study_ID;tissue;platform;title;timepoint;MFC;responder;vaccine;vaccine_dose;sex;age |
GSE102012 | microarray | GPL13158; [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate | vaccine | influenza | H5N1 | whole blood | yes | no | 50 | 384 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine |
GSE217770 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | influenza | Influenza LAIV | whole blood | yes | no | 53 | 371 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;sex |
GSE230494 | RNA-seq | GPL18573; Illumina NextSeq 500 (Homo sapiens) | vaccine | influenza | Influenza LAIV | nasal swab | yes | no | 39 | 60 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine |
GSE29614 | microarray | GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 9 | 27 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine |
GSE29615 | microarray | GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array | vaccine | influenza | Influenza LAIV | PBMC | yes | yes | 28 | 83 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine |
GSE29617 | microarray | GPL570; [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 28 | 80 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine |
GSE52005 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza LAIV/TIV | whole blood | yes | no | 38 | 140 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;sex;age;race |
GSE48762 | microarray | GPL6947; Illumina HumanHT-12 V3.0 expression beadchip | vaccine | influenza/pneumococcal | Influenza TIV/Saline/Pneumovax | whole blood | yes | yes | 34 | 621 | null | geo_accession;ID;study_ID;tissue;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;immport_expsamp_acc;ethnicity;race |
GSE107990 | microarray | GPL10558; llumina HumanHT-12 V4.0 expression beadchip | vaccine | influenza | Influenza TIV | PBMC | yes | no | 172 | 671 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;sex;age;ethnicity |
GSE45735 | RNA-seq | GPL10999; Illumina Genome Analyzer IIx (Homo sapiens) | vaccine | influenza | Influenza TIV | PBMC | yes | yes | 5 | 54 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;MFC;responder;vaccine;sex;age;ethnicity;race |
GSE281864 | RNA-seq | GPL20301; Illumina HiSeq 4000 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | whole blood | yes | no | 17 | 193 | null | geo_accession;study_ID;tissue;platform;pathogen;title;timepoint;vaccine;vaccine_dose |
GSE201642 | RNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/BNT162b2 | PBMC | yes | yes | 15 | 48 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;study_group;vaccine;sex;age;UnderlyingDisease |
GSE250023 | RNA-seq | GPL28038; DNBSEQ-G400 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | whole blood | yes | yes | 18 | 75 | null | geo_accession;ID;study_ID;tissue;platform;pathogen;title;timepoint;responder_original;vaccine;sex;UnderlyingDisease |
challenge_covid19 | scRNA-seq | Illumina NovaSeq 6000 (Homo sapiens) | inoculation | SARS-CoV-2 | null | PBMC | no | yes | 16 | 144 | 606,074 | List in the h5ad obs |
EMTAB10026 | scRNA-seq | Illumina NovaSeq 6000 (Homo sapiens) | inoculation | SARS-CoV-2 | null | PBMC | no | no | 130 | 143 | 647,366 | List in the h5ad obs |
eskd_covid19 | scRNA-seq | Illumina NovaSeq 6000 (Homo sapiens) | mixed exposure | SARS-CoV-2 | null | nasal swab/PBMC | no | no | 61 | 187 | 588,389 | List in the h5ad obs |
GSE201534 | scRNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | ChAdOx1/BNT162b2 | PBMC | no | no | 6 | 12 | 87,160 | List in the h5ad obs |
GSE247917 | scRNA-seq | GPL18573; Illumina NextSeq 500 (Homo sapiens)/GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | PBMC | no | no | 14 | 54 | 195,489 | List in the h5ad obs |
GSE195673 | scRNA-seq | GPL24676; Illumina NovaSeq 6000 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b2 | PBMC/Lymph Node | no | no | 8 | 56 | 383,635 | List in the h5ad obs |
GSE246937 | scRNA-seq | GPL21697; NextSeq 550 (Homo sapiens) | vaccine | SARS-CoV-2 | BNT162b | whole blood | no | yes | 10 | 25 | 49,829 | List in the h5ad obs |
HR-VILAGE-3K3M: Human Respiratory Viral Immunization Longitudinal Gene Expression
This repository provides the HR-VILAGE-3K3M dataset, a curated collection of human longitudinal gene expression profiles, antibody measurements, and aligned metadata from respiratory viral immunization and infection studies. The dataset includes baseline transcriptomic profiles and covers diverse exposure types (vaccination, inoculation, and mixed exposure). HR-VILAGE-3K3M is designed as a benchmark resource to support the development and evaluation of deep learning models for longitudinal gene expression analysis and to facilitate research into the temporal dynamics of immune responses.
Fig: Overview of HR-VILAGE-3K3M. (a) HR-VILAGE-3K3M construction workflow. (b) Distribution of sample timepoints for vaccine and inoculation studies, , shown separately for bulk RNA-seq and single-cell RNA-seq datasets. (c) Composition of the dataset, stratified by platform, tissue type, study type, and pathogen, including both bulk and single-cell transcriptomic studies.
Dataset Description:
- This repo contains 66 studies (59 bulk and 7 single cell studies), comprising 3178 subjects and 14,136 observations along with 2,557,942 single cells.
- We provide preprocessed and normalized gene expression data, raw gene expression data, metadata and antibody data.
Data Structure:
HR-VILAGE-3K3M/
βββ README.md
βββ study_meta.csv
βββ bulk_gene_expr/
β βββ <study_ID>_gene_expr.csv
βββ singel_cell_gene_expr/
β βββ <study_ID>.h5ad
βββ meta/
β βββ <study_ID>_meta.csv
βββ bulk_gene_expr_raw/
β βββ <study_ID>_raw.csv
βββ antibody/
βββ <study_ID>_antibody.csv
- study_meta.csv: Contains study-level metadata (e.g., platform, tissue type, study type) and serves as an overview of the repository. Users can use this file to filter and select a subset of studies based on custom criteria.
- bulk_gene_expr/: Processed gene expression matrices for each study (sample-by-gene). All files share the same 41,667 gene columns, with 9,004 genes non-missing across all studies.
- singel_cell_gene_expr/: Processed single cell gene expression matrices for each study in h5ad format. Raw count matrices are stored in the .X attribute, and cell-level metadata is stored in the .obs dataframe.
- meta/: Study-specific metadata files (.csv), aligned by row names with the corresponding expression data. All metadata files share the same column structure; missing values are marked as NA.
- bulk_gene_expr_raw/: Raw probe-level expression matrices (probe-by-sample), provided when available to support custom preprocessing workflows.
- antibody/: Raw antibody measurements with sample IDs matching those in the metadata, enabling integration with gene expression data at the subject level.
How to start:
Users could directly download all files and read files locally.
Alternatively, the following provides (partially) loading the dataset into Python using dataset
package.
repo_id = "xuejun72/HR-VILAGE-3K3M"
import pandas as pd
from datasets import load_dataset
Bulk gene expression data
Bulk gene expression data can be loaded and combined using two alternative approaches.
Use our predefined configuration name, and pass to
name
argument inload_dataset()
.trust_remote_code=True
andrevision="script"
are required.Example 1, to download study_meta:
study_meta = load_dataset(repo_id, name="study_meta", trust_remote_code=True, revision="script")["train"].to_pandas()
Example 2, to download and combine all meta datasets:
meta_dict = load_dataset(repo_id, name = "meta", trust_remote_code=True, revision="script") meta = meta_dict["train"].to_pandas()
Example 3, to download and combine all bulk gene expression datasets. However, this is highly NOT recommended since their size are too large and the execution time will be long.
# Not recommended! gene_expr_dict = load_dataset(repo_id, name = "bulk_gene_expr", trust_remote_code=True, revision="script")
In addition, we provide a study filter function before downloading and loading, which works for meta and bulk gene expression datasets.
split_filter
argument is designed for this filter, which is optional. By default,split_filter=None
will download all datasets as shown before.split_filter
is adict
Python object wherekey
is filter factors taking values from['study_type','platform','tissue','pathogen','vaccine']
andvalue
is a list of categories for eachkey
.value
should be exact same as that in study_meta.csv. Some examples of a validsplit_filter
:split_filter = {"study_type": ["inoculation","inoculation"]} split_filter = {"study_type": ["vaccine"], "vaccine": ["Influenza TIV"]} split_filter = {"study_type": ["vaccine"], "platform": ["RNA-seq"], "tissue": ["PBMC","nasal swab"], "pathogen": []}
Example 4, to download and combine a customized filtered meta dataset:
split_filter = {"study_type": ["vaccine"], "platform": ["RNA-seq"], "tissue": ["PBMC","nasal swab"], "pathogen": []} meta_filtered_dict = load_dataset(repo_id, name = "meta", trust_remote_code=True, split_filter=split_filter, revision="script") for _, value in meta_filtered_dict.items(): meta_filtered = value.to_pandas().set_index("row_name") meta_filtered
Example 5, to download and combine a customized filtered bulk gene expression dataset:
split_filter = {"study_type": ["vaccine"], "platform": ["RNA-seq"], "tissue": ["PBMC","nasal swab"], "pathogen": []} gene_expr_filtered_dict = load_dataset(repo_id, name = "bulk_gene_expr", trust_remote_code=True, split_filter=split_filter, revision="script") gene_names = gene_expr_filtered_dict["gene_expr_colnames"][0]["gene_names"] all_row_names = [] all_matrix = [] for batch in next(iter(gene_expr_filtered_dict.items()))[1]: all_row_names.extend(batch["row_names"]) all_matrix.extend(batch["matrix"]) gene_expr_filtered = pd.DataFrame(all_matrix, index=all_row_names, columns=gene_names) gene_expr_filtered
Use exact path of one csv file, and pass to
data_files
argument inload_dataset()
.Example 1, to download study_meta:
study_meta = load_dataset(repo_id, data_files = "study_meta.csv")["train"].to_pandas()
Example 2, to download antibody dataset for GSE194378:
antibody = load_dataset(repo_id, data_files = "antibody/GSE194378_antibody.csv")["train"].to_pandas()
Example 3, to download raw gene expression dataset for GSE194378:
raw = load_dataset(repo_id, data_files = "bulk_gene_expr_raw/GSE194378_raw.csv")["train"].to_pandas()
Note: for antibody and raw gene expression datasets, since different study has different columns which cannot be simply combined, loading them must using
data_files
argument and be one-by-one.
Single cell gene expression data
Single-cell gene expression data can be downloaded and accessed using the anndata package.
import anndata as ad
# Load the GSE195673 dataset
GSE195673 = ad.read_h5ad("./GSE195673_processed.h5ad")
# View cell-level metadata
GSE195673.obs
A merged dataset containing all 7 studies is also provided, comprising 2,557,942 cells and 13,589 common genes:
import anndata as ad
# Load the combined dataset
combined = ad.read_h5ad("./combined.h5ad")
# View cell-level metadata
combined.obs
The combined object includes detailed cell-level metadata such as sample_id, cell_type, sex, donor_id, time_point_day, dataset, covid_status, age, tissue, and study_type. It also contains dimensionality reductions (X_pca, X_umap) and graph-based neighbor information in obsp for downstream analysis.
Example code:
The codes for data processing and reproducing evaluation results in the paper are in Document.
Data Relations:
The following duplicate studies (right nodes) are not included in HR-VILAGE-3K3M, while their source studies (left leaves) are included in HR-VILAGE-3K3M.
GSE73072_H3N2_DEE2 βββ
βββ GSE52428
GSE73072_H1N1_DEE4 βββ
GSE73072_H3N2_DEE2 βββ GSE30550
GSE73072_HRV_UVA βββ
GSE73072_RSV_DEE1 ββ βββ GSE17156
GSE73072_H3N2_DEE2 βββ
The studies grouped below originate from the same research group and were typically processed using consistent experimental and technical pipelines. Consequently, these studies are expected to exhibit minimal batch effects compared to those conducted independently. We provide this grouping information to assist users interested in pooling data across studiesβcombining studies from the same group can help mitigate confounding technical variability and enhance statistical power in downstream analyses such as differential expression. Notably, GSE201533 and GSE201534 represent paired bulk RNA-seq and single-cell RNA-seq data from the same subjects, while GSE246937 is paired with GSE246525, offering a valuable opportunity for multi-resolution analyses.
How to cite:
@misc{sun2025hrvilage3k3mhumanrespiratoryviral,
title={HR-VILAGE-3K3M: A Human Respiratory Viral Immunization Longitudinal Gene Expression Dataset for Systems Immunity},
author={Xuejun Sun and Yiran Song and Xiaochen Zhou and Ruilie Cai and Yu Zhang and Xinyi Li and Rui Peng and Jialiu Xie and Yuanyuan Yan and Muyao Tang and Prem Lakshmanane and Baiming Zou and James S. Hagood and Raymond J. Pickles and Didong Li and Fei Zou and Xiaojing Zheng},
year={2025},
eprint={2505.14725},
archivePrefix={arXiv},
primaryClass={q-bio.GN},
url={https://arxiv.org/abs/2505.14725},
}
- Downloads last month
- 5,723