seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf y1_valid = tf.to_float( tf.less_equal(y1, max_y) & tf.greater_equal(y1, 0)) z0_valid = tf.to_float( tf.less_equal(z0, max_z) & tf.greater_equal(z0, 0)) z1_valid = tf.to_float( tf.less_equal(z1, max_z) & tf.greater_equal(z1, 0)) w_z0_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) * (z1_f - z) * x1_valid * y1_valid * z1_valid), 1) w_z0_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) * (z1_f - z) * x0_valid * y1_valid * z1_valid), 1) w_z0_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) * (z1_f - z) * x1_valid * y0_valid * z1_valid), 1) w_z0_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) * (z1_f - z) * x0_valid * y0_valid * z1_valid), 1) w_z1_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) *
tensorflow.expand_dims
500
import tensorflow as tf 'conv17', conv16, filters=512, size=1, stride=1, bn=self.BN, act='lrelu') conv18 = self._conv_layer( 'conv18', conv17, filters=1024, size=3, stride=1, bn=self.BN, act='lrelu') with tf.variable_scope('detector') as scope: conv19 = self._conv_layer( 'conv19', conv18, filters=1024, size=3, stride=1, bn=self.BN, act='lrelu') conv20 = self._conv_layer(
tensorflow.variable_scope
501
import tensorflow as tf W_deps = tf.get_variable("embed_W_deps", [deps_vocab_size, embedding_size], initializer=initializer) embedded_deps = tf.nn.embedding_lookup(W_deps, self.input_deps)
tensorflow.nn.embedding_lookup
502
import tensorflow as tf import layers import networks def _get_grad_norm(ys, xs): """Compute 2-norm of dys / dxs.""" return tf.sqrt( tf.add_n([tf.reduce_sum(tf.square(g)) for g in tf.gradients(ys, xs)])) def _num_filters_stub(block_id): return networks.num_filters(block_id, 8, 1, 8) class NetworksTest(tf.test.TestCase):
tensorflow.gradients
503
from tensorflow.python.framework import ops array_ops.zeros([self._target_column.num_label_columns]), collections=[self._centered_bias_weight_collection, ops.GraphKeys.VARIABLES], name="centered_bias_weight") logging_ops.scalar_summary( ["centered_bias_%d" % cb for cb in range( self._target_column.num_label_columns)], array_ops.reshape(centered_bias, [-1])) return centered_bias def _centered_bias_step(self, targets, features): centered_bias = ops.get_collection(self._centered_bias_weight_collection) batch_size = array_ops.shape(targets)[0] logits = array_ops.reshape( array_ops.tile(centered_bias[0], [batch_size]), [batch_size, self._target_column.num_label_columns]) loss = self._target_column.loss(logits, targets, features) # Learn central bias by an optimizer. 0.1 is a convervative lr for a single # variable. return training.AdagradOptimizer(0.1).minimize(loss, var_list=centered_bias) def _logits(self, features, is_training=False):
tensorflow.python.framework.ops.get_collection
504
import tensorflow as tf id_to_char = tf.contrib.lookup.index_to_string_table_from_tensor(chars, " ") return char_to_id, id_to_char def characters(filename, batch_size, sequence_size): """Returns a dataset of characters from the given file.""" def _to_chars(line): """string scalar -> Dataset of characters (string scalars).""" chars, = tf.py_func(_split_string, [line + "\n"], [tf.string]) chars.set_shape([None]) return tf.data.Dataset.from_tensor_slices(chars) return (tf.data.TextLineDataset([filename]) .flat_map(_to_chars) .repeat() .batch(tf.to_int64(sequence_size)) .shuffle(1000) .batch(tf.to_int64(batch_size)))
tensorflow.data.TextLineDataset
505
import tensorflow as tf conv(self._attention(tf.concat([self.enc[1], self.enc[2]], axis=-1), name="attn1"), 1, bias=False, name="start_pointer"), -1) end_logits = tf.squeeze( conv(self._attention(tf.concat([self.enc[1], self.enc[3]], axis=-1), name="attn2"), 1, bias=False, name="end_pointer"), -1) else: start_logits = tf.squeeze( conv(tf.concat([self.enc[1], self.enc[2]], axis=-1), 1, bias=False, name="start_pointer"), -1) end_logits = tf.squeeze( conv(tf.concat([self.enc[1], self.enc[3]], axis=-1), 1, bias=False, name="end_pointer"), -1) self.logits = [mask_logits(start_logits, mask=tf.reshape(self.c_mask, [N, -1])), mask_logits(end_logits, mask=tf.reshape(self.c_mask, [N, -1]))] self.logits1, self.logits2 = [l for l in self.logits] outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2), tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
tensorflow.concat
506
from tensorflow.contrib.rnn.python.ops.core_rnn_cell import _Linear @property def output_size(self): return self._num_units def __call__(self, inputs, state, att_score): return self.call(inputs, state, att_score) def call(self, inputs, state, att_score=None): """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer) value = math_ops.sigmoid(self._gate_linear([inputs, state])) r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1) r_state = r * state if self._candidate_linear is None: with vs.variable_scope("candidate"): self._candidate_linear = _Linear( [inputs, r_state],
tensorflow.contrib.rnn.python.ops.core_rnn_cell._Linear
507
import tensorflow as tf def __init__(self, is_training, config, input_): self._is_training = is_training self._input = input_ self._rnn_params = None self._cell = None self.batch_size = input_.batch_size self.num_steps = input_.num_steps size = config.hidden_size vocab_size = config.vocab_size with tf.device("/cpu:0"): embedding = tf.get_variable( "embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, input_.input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) output, state = self._build_rnn_graph(inputs, config, is_training)
tensorflow.device
508
import tensorflow as tf class_true = tf.reshape(y_true[..., 15], [num_batch * num_prior, 1]) # define filter mask: class_true = 1 (pos), 0 (neg), -1 (ignore) # landm_valid = 1 (w landm), 0 (w/o landm) mask_pos = tf.equal(class_true, 1) mask_neg = tf.equal(class_true, 0) mask_landm = tf.logical_and(tf.equal(landm_valid, 1), mask_pos)
tensorflow.equal
509
import tensorflow as tf constraint_tf[key] = (tf.constant(low, dtype=tf.float64), tf.constant(high, dtype=tf.float64)) print("N.B.: using direct data entry") likelihood = sum_pdf(data, nsig, sigmean, sigwidth, nbkg, m0, argpar, constraint_tf['mes'][0], constraint_tf['mes'][1]) nll = tf.neg(tf.reduce_sum(tf.log(likelihood)), name="nll") variables = tf.all_variables() grads = tf.gradients(nll, variables) # ### build constraint inequalities inequalities = [] for key, (lower, upper) in constraint_tf.iteritems(): if key != 'mes': inequalities.append(vdict[key] - lower) inequalities.append(upper - vdict[key]) # ### build bounds instead of inequalities (only for L-BFGS-B, TNC and SLSQP) # N.B.: order important! Also supply variables to be sure the orders match.
tensorflow.gradients
510
import tensorflow as tf for x in output ], axis=0) return output def process(policy, dataloader, top_k): mean_kacc = np.zeros(len(top_k)) n_samples_processed = 0 for batch in dataloader: if policy['type'] == 'gcnn': c, ei, ev, v, n_cs, n_vs, n_cands, cands, best_cands, cand_scores = batch pred_scores = policy['model']((c, ei, ev, v, tf.reduce_sum(n_cs, keepdims=True), tf.reduce_sum(n_vs, keepdims=True)), tf.convert_to_tensor(False)) # filter candidate variables pred_scores = tf.expand_dims(tf.gather(tf.squeeze(pred_scores, 0), cands), 0) elif policy['type'] == 'ml-competitor': cand_feats, n_cands, best_cands, cand_scores = batch # move to numpy cand_feats = cand_feats.numpy() n_cands = n_cands.numpy() # feature normalization cand_feats = (cand_feats - policy['feat_shift']) / policy['feat_scale']
tensorflow.convert_to_tensor
511
import tensorflow as tf stddev=0.02, data_format='NDHWC') : with tf.variable_scope(name) : assert(data_format == 'NDHWC') self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.strides = [d_t,d_h,d_w] def __call__(self,input_var,name=None,w=None,b=None,**kwargs) :
tensorflow.truncated_normal_initializer
512
import tensorflow as tf features["label_ids"] = create_int_feature(feature.label_ids) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([seq_length], tf.int64), } def _decode_record(record, name_to_features): example = tf.parse_single_example(record, name_to_features) for name in list(example.keys()):
tensorflow.FixedLenFeature
513
import tensorflow as tf def embed(X, we): #X [-1,,2] we = convert_gradient_to_tensor(we) e = tf.gather(we, X) h = tf.reduce_sum(e, 2) return h def clf(x, ny, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), train=False): with tf.variable_scope('clf'): nx = shape_list(x)[-1] w = tf.get_variable("w", [nx, ny], initializer=w_init) b = tf.get_variable("b", [ny], initializer=b_init) return tf.matmul(x, w)+b def model(X, M, Y, train=False, reuse=False): with tf.variable_scope('model', reuse=reuse): we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) we = dropout(we, embd_pdrop, train) #X:[n_batch_train, 2, n_ctx, 2] -> [n_batch_train*2,n_ctx,2] X = tf.reshape(X, [-1, n_ctx, 2]) M = tf.reshape(M, [-1, n_ctx])
tensorflow.get_variable
514
from tensorflow import ConfigProto self._num_classes = num_classes self._score_threshold = score_threshold self._image_sz = image_sz[0:2] self._config = ConfigProto() self._config.gpu_options.allow_growth = True self._graph = tf.Graph()
tensorflow.ConfigProto
515
import tensorflow as tf def export_ops(self, name): self._name = name ops = {self.with_prefix(self._name, 'cost'): self._cost} if self._is_training: ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update) if self._rnn_params: ops.update(rnn_params=self._rnn_params) for name, op in ops.items(): tf.add_to_collection(name, op) self._initial_state_name = self.with_prefix(self._name, 'initial') self._final_state_name = self.with_prefix(self._name, 'final') for state_tuple in self._initial_state: tf.add_to_collection(self._initial_state_name, state_tuple.c) tf.add_to_collection(self._initial_state_name, state_tuple.h) for state_tuple in self._final_state: tf.add_to_collection(self._final_state_name, state_tuple.c) tf.add_to_collection(self._final_state_name, state_tuple.h) def import_state_tuples(self, state_tuples, name, num_replicas): restored = [] for i in range(len(state_tuples) * num_replicas): c = tf.get_collection_ref(name)[2 * i + 0] h = tf.get_collection_ref(name)[2 * i + 1]
tensorflow.add_to_collection
516
import tensorflow as tf with tf.variable_scope('conditional_1'): output, state = update(state, input_) elif decoder.update_first: output, state = update(state, input_, None, ids) elif decoder.generate_first: output, state = tf.cond(tf.equal(time, 0), lambda: (output, state), lambda: update(state, input_, context, ids)) context, new_weights = look(time, output, input_, pos=pos, prev_weights=prev_weights, context=context) if decoder.conditional_rnn: with tf.variable_scope('conditional_2'): output, state = update(state, context) elif not decoder.generate_first: output, state = update(state, input_, context, ids) logits = generate(output, input_, context) pos = tf.expand_dims(pos, axis=1) state = tf.concat([state, context, pos, new_weights], axis=1) return state, logits def _time_step(time, input_, input_symbol, pos, state, output, outputs, states, weights, attns, prev_weights,
tensorflow.variable_scope
517
from tensorflow.contrib.learn.python.learn.estimators import head as head_lib config=config, params={ "head": head_lib._regression_head( # pylint: disable=protected-access label_dimension=label_dimension, weight_column_name=weight_column_name,
tensorflow.contrib.learn.python.learn.estimators.head._regression_head
518
import tensorflow as tf # tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1]) # loss = compute_contra_loss(pred1, pred2, tgt1, tgt2) # print(loss) # return loss i = tf.constant(0) loss = tf.constant(0.) final_loss = tf.while_loop(lambda l, i: i < resample, sample_compute, [loss, i])[0] # final_loss = tf.scan(sample_compute, tf.range(resample), loss)[-1] # final_loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems= tf.range(resample), dtype=tf.float32, parallel_iterations=1) # print('final', final_loss) # final_loss = loss
tensorflow.constant
519
import tensorflow as tf beta_list.append(beta) with tf.variable_scope('lstm', reuse=(t!=0)): _, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x, context]), state=[c, h]) logits = self._decode_lstm(x, h, context, reuse=(t!=0)) sampled_word = tf.argmax(logits, 1) sampled_word_list.append(sampled_word) alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L) betas = tf.transpose(tf.squeeze(beta_list), (1, 0)) # (N, T) sampled_captions = tf.transpose(tf.stack(sampled_word_list), (1, 0)) # (N, max_len) return alphas, betas, sampled_captions
tensorflow.stack
520
import tensorflow as tf add=True, transpose=transpose) else: y = sbnet_module.sparse_scatter( q, indices.bin_counts, indices.active_block_indices, x, dynamic_bsize=tf.constant(block_params.bsize_out, dtype=tf.int32), dynamic_bstride=tf.constant(block_params.bsize_out, dtype=tf.int32), dynamic_boffset=tf.constant([0, 0], dtype=tf.int32), add=True, transpose=transpose) return y def sparse_conv2d_matmul(x, w, blk_indices, strides, padding): """ Performs 2D convolution using matrix multiplication on a sparse feature map. Naive python implementation of sparse convolution using gather and scatter.
tensorflow.constant
521
import tensorflow as tf self.n_steps = len(X_train[0]) # 128 time_steps per series # Training self.learning_rate = 0.0025 self.lambda_loss_amount = 0.0015 self.training_epochs = 300 self.batch_size = 1000 # LSTM structure self.n_inputs = len(X_train[0][0]) # Features count is of 9: three 3D sensors features over time self.n_hidden = N_HIDDEN_CONFIG # nb of neurons inside the neural network self.n_classes = 6 # Final output classes self.W = { 'hidden': tf.Variable(tf.random_normal([self.n_inputs, self.n_hidden])), # [9, 32] 'output': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes])) # [32, 6] } self.biases = { 'hidden': tf.Variable(tf.random_normal([self.n_hidden], mean=1.0)), # [32] 'output': tf.Variable(tf.random_normal([self.n_classes])) # [6] } config = Config(X_train, X_test) # print("Some useful info to get an insight on dataset's shape and normalisation:") # print("features shape, labels shape, each features mean, each features standard deviation") # print(X_test.shape, y_test.shape, # np.mean(X_test), np.std(X_test)) # print("the dataset is therefore properly normalised, as expected.") #
tensorflow.random_normal
522
import tensorflow as tf if not callable(else_expression): def else_expression_fn(): return else_expression else: else_expression_fn = else_expression x = tf.cond(condition, then_expression_fn, else_expression_fn) return x def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Computes mean and std for batch then apply batch_normalization on batch.
tensorflow.cond
523
import tensorflow as tf gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) img = inputs_list[i][0] img_shape = inputs_list[i][-2:] img = tf.image.crop_to_bounding_box(image=img, offset_height=0, offset_width=0, target_height=tf.cast(img_shape[0], tf.int32), target_width=tf.cast(img_shape[1], tf.int32)) outputs = r3det_gwd.build_whole_detection_network(input_img_batch=img, gtboxes_batch_h=gtboxes_and_label_h, gtboxes_batch_r=gtboxes_and_label_r, gpu_id=i)
tensorflow.cast
524
import tensorflow as tf with tf.control_dependencies(_maybe_validate_rightmost_transposed_ndims( rightmost_transposed_ndims, validate_args)): rightmost_transposed_ndims = tf.identity(rightmost_transposed_ndims) perm = tf.range( start=rightmost_transposed_ndims - 1, limit=-1, delta=-1, name='perm') else: # perm is not None: perm = tf.convert_to_tensor(value=perm, dtype=np.int32, name='perm') rightmost_transposed_ndims = tf.size( input=perm, name='rightmost_transposed_ndims') rightmost_transposed_ndims_ = tf.get_static_value( rightmost_transposed_ndims) with tf.control_dependencies(_maybe_validate_perm(perm, validate_args)): perm = tf.identity(perm) # TODO(b/110828604): If bijector base class ever supports dynamic # `min_event_ndims`, then this class already works dynamically and the # following five lines can be removed.
tensorflow.size
525
import tensorflow as tf (gt_boxes_width, gt_boxes_height, gt_boxes_urx, gt_boxes_ury) = get_width_upright(gt_boxes) if variances is None: variances = [1., 1.] targets_dx = (gt_boxes_urx - bboxes_urx)/(bboxes_width * variances[0]) targets_dy = (gt_boxes_ury - bboxes_ury)/(bboxes_height * variances[0]) targets_dw = tf.log(gt_boxes_width / bboxes_width) / variances[1] targets_dh = tf.log(gt_boxes_height / bboxes_height) / variances[1] targets = tf.concat( [targets_dx, targets_dy, targets_dw, targets_dh], axis=1) return targets def decode(roi, deltas, variances=None): with tf.name_scope('BoundingBoxTransform/decode'):
tensorflow.log
526
import tensorflow as tf n_bins = 2**n_bits rgb_out = rgb # discretization noise if add_dequantization_noise: shape = tf.shape(rgb_out) rgb_out += tf.random_uniform(shape=shape)*(1/n_bins) return rgb_out
tensorflow.shape
527
import tensorflow as tf total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32)) # add mask for glabels and cls_pred here glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, FLAGS.num_classes), tf.stop_gradient(final_mask)) cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask)) location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
tensorflow.clip_by_value
528
import tensorflow as tf end_loss = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits2, labels=end_label) self.loss = tf.reduce_mean(start_loss + end_loss) else: start_loss = focal_loss(tf.nn.softmax(self.logits1, -1), start_label) end_loss = focal_loss(tf.nn.softmax(self.logits2, -1), end_label) self.loss = tf.reduce_mean(start_loss + end_loss) self.logger.info("loss type %s" % self.config.loss_type) self.all_params = tf.trainable_variables()
tensorflow.nn.softmax
529
import tensorflow as tf if direction is None: direct_mask_un = tf.not_equal(unhead_idxs, undep_idxs) # [bs, sluh, sld] else: if direction == 'forward': direct_mask_un = tf.greater(unhead_idxs, undep_idxs) # [bs, sluh, sld] else: direct_mask_un = tf.less(unhead_idxs, undep_idxs) # [bs, sluh, sld] # [bs, sluh, sld] rep_mask_tile_un = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_unhead_mask, 2)) pooling_mask = tf.logical_and(direct_mask_un, rep_mask_tile_un) # [bs, sluh, sld] # data for pooling pooling_data = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_unhead, 1, 1]) # bs,sluh,sld,hn # execute mean pooling based on pooling_mask[bs, sluh, sld] and pooling_data[bs,sluh,sld,hn] pooling_data = mask_for_high_rank(pooling_data, pooling_mask) # [bs,sluh,sld,hn] pooling_data_sum = tf.reduce_sum(pooling_data, -2) # [bs,sluh,hn] pooling_den = tf.reduce_sum(tf.cast(pooling_mask, tf.int32), -1, keep_dims=True) # [bs,sluh] pooling_den = tf.where(tf.equal(pooling_den, 0), tf.ones_like(pooling_den), pooling_den) pooling_result = pooling_data_sum / tf.cast(pooling_den, tf.float32) return pooling_result def scaled_tanh(x, scale=5.): return scale * tf.nn.tanh(1./scale * x)
tensorflow.expand_dims
530
import tensorflow as tf # Reshape patches. p = tf.reshape(p, [blk_shape[0], blk_shape[1], blk_shape[2], -1]) # Convolution on patches. q = tf.nn.conv2d(p, w, strides, 'VALID', use_cudnn_on_gpu=True) # Paste convolution results. q_shape = tf.shape(q) def _strides_gt_one(): # Calculate output indices when strides > 1. blk_indices_crop = tf.strided_slice(blk_indices, [0, 0, 0, 0], [ blk_shape[0], q_shape[1] * strides[1], q_shape[2] * strides[2], 3 ], strides) blk_indices_crop = blk_indices_crop // tf.stack([1, strides[1], strides[2]]) return blk_indices_crop def _strides_one(): # Calculate otuput indices when strides = 1. return blk_indices[:, :q_shape[1], :q_shape[2], :] strides_gt_one = tf.logical_or(tf.greater(strides[1], 1), tf.greater(strides[2], 1))
tensorflow.strided_slice
531
import tensorflow as tf return scale * tf.nn.tanh(1. / scale * x) bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = hn or rep_tensor.get_shape().as_list()[2] input_dim = rep_tensor.get_shape().as_list()[2] with tf.variable_scope(scope or 'block_simple'): # @1. split sequence with tf.variable_scope('split_seq'): block_num = tf.cast(tf.ceil(tf.divide(tf.cast(sl, tf.float32), tf.cast(block_len, tf.float32))), tf.int32) comp_len = block_num * block_len - sl rep_tensor_comp = tf.concat([rep_tensor, tf.zeros([bs, comp_len, input_dim], tf.float32)], 1) rep_mask_comp = tf.concat([rep_mask, tf.cast(tf.zeros([bs, comp_len], tf.int32), tf.bool)], 1) rep_tensor_split = tf.reshape(rep_tensor_comp, [bs, block_num, block_len, input_dim]) # bs,bn,bl,d rep_mask_split = tf.reshape(rep_mask_comp, [bs, block_num, block_len]) # bs,bn,bl
tensorflow.cast
532
import tensorflow as tf # ============================================================================OUT # print('VNET Out:', X.get_shape().as_list()) # if self.args.mode == 'adapt': return X, X_EARLY, X_MIDDLE, X_LATE, prediction # else: # return X, prediction def D_4(self, X, reuse): def discrim_conv(name, X, out_channels, filtersize, stride=1, norm='', nonlin=True, init_stddev=-1): with tf.variable_scope(name) as scope: if init_stddev <= 0.0: init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32) else: init = tf.truncated_normal_initializer(stddev=init_stddev) X = tf.layers.conv2d(X, out_channels, kernel_size=filtersize, strides=(stride, stride), padding="valid", kernel_initializer=init) if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse, epsilon=0.001) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=True)
tensorflow.variable_scope
533
import tensorflow as tf # add by wangxiao # define the inputs of signature def serving_input_fn(): label_ids = tf.placeholder(tf.int32, [None], name='label_ids') input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids') input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask') segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids') input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ 'label_ids': label_ids, 'input_ids': input_ids, 'input_mask': input_mask,
tensorflow.placeholder
534
import tensorflow as tf return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1])
tensorflow.stack
535
from tensorflow.python.framework import ops return g.extra_inputs else: return [] def get_extra_args(): """Returns the corresponding function arguments for the captured inputs. Returns: If the default graph is being used to define a function, the returned list of place holders are those used inside the function body corresponding those returned by get_extra_inputs(). Otherwise, returns an empty list. """ g = ops.get_default_graph() if isinstance(g, _FuncGraph): return g.extra_args else: return [] class _DefinedFunction(object): """_DefinedFunction encapsulates a function definition and its properties. Attributes: name: The function name. definition: The definition of this function. A FunctionDef proto. grad_func_name: If not None, the name of this function's gradient function.
tensorflow.python.framework.ops.get_default_graph
536
import tensorflow as tf with tf.control_dependencies([assert_op]): barrier = tf.no_op(name)
tensorflow.no_op
537
import tensorflow as tf tile_multiples.insert(index_c, 1) weights = tf.tile(weights, tile_multiples)
tensorflow.tile
538
import tensorflow as tf # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1)
tensorflow.zeros_initializer
539
import tensorflow as tf scores, classes, min_score_thresh=0.65, min_iou_thresh=0.5, is_class_agnostic=False) nms_masks_expected2 = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32) nms_scores_expected2 = tf.constant([], dtype=tf.float32) nms_classes_expected2 = tf.constant([], dtype=tf.int32) self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy()) self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy()) self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy()) self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy()) self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy()) self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy())
tensorflow.constant
540
import tensorflow as tf def f(a, b): batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) output = f(tf.constant([[1, 3]]), tf.constant([2])) tf.train.start_queue_runners()
tensorflow.constant
541
import tensorflow as tf atten_hidden = tf.tanh( tf.add( tf.matmul(self.position_emb, W), tf.matmul(output, U))) alpha = tf.nn.softmax( tf.reshape(tf.matmul(atten_hidden, V), [-1, shape[1], 1]), axis=1) output = tf.reshape(output, [-1, shape[1], 2 * self.config.hidden_size]) C = tf.multiply(alpha, output) return tf.concat([output, C], axis=-1) def _train_epoch(self, train_batches, dropout): """ :param train_batches: :param dropout: :return:
tensorflow.concat
542
import tensorflow as tf average_across_batch=True) # Update the cost self._cost = tf.reduce_sum(loss) self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.train.get_or_create_global_step())
tensorflow.Variable
543
import tensorflow as tf output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****")
tensorflow.gfile.GFile
544
import tensorflow as tf print((sess.run(custom_polynomial(tf, 11)))) alpha = 0.1 val = tf.constant([[2, 3], [1, 4]], dtype=tf.float32) l1 = tf.contrib.layers.l1_regularizer(alpha)(val) l2 = tf.contrib.layers.l2_regularizer(alpha)(val) A = [[0.8, 0.6, 0.3], [0.1, 0.6, 0.4]] B = [1, 1] top_k = tf.nn.top_k(A, 2) in_top_k = tf.nn.in_top_k(A, B, 1)
tensorflow.contrib.layers.l2_regularizer
545
import tensorflow as tf save_pb_at_end = config.get("save_pb", 0) )) # summary hook if config["save_summaries"]: save_steps_summaries = self._get_steps(config["save_summaries_period"], self._time_reference_str) self.set_summaries() summary_hooks = [tf.train.SummarySaverHook(save_steps=save_steps_summaries, output_dir=self._tensorboard_dir+sn.name, summary_op=sn, summary_writer=fw) for sk in self.summary_keys for sn,fw in zip(self.summary_nodes[sk], self.summary_writers[sk])] hooks += summary_hooks # images input hook
tensorflow.train.SummarySaverHook
546
import tensorflow as tf # Host call fns are executed FLAGS.iterations_per_loop times after one # TPU loop is finished, setting max_queue value to the same as number of # iterations will make the summary writer only flush the data to storage # once per loop. with (tf.contrib.summary.create_file_writer( params['model_dir'], max_queue=params['iterations_per_loop']).as_default()): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar( 'total_loss', tf.reduce_mean(total_loss), step=global_step) tf.contrib.summary.scalar( 'total_rpn_loss', tf.reduce_mean(total_rpn_loss), step=global_step) tf.contrib.summary.scalar( 'rpn_score_loss', tf.reduce_mean(rpn_score_loss), step=global_step) tf.contrib.summary.scalar( 'rpn_box_loss', tf.reduce_mean(rpn_box_loss), step=global_step) tf.contrib.summary.scalar( 'total_fast_rcnn_loss', tf.reduce_mean(total_fast_rcnn_loss), step=global_step) tf.contrib.summary.scalar(
tensorflow.reduce_mean
547
import tensorflow as tf # inputs = tf.unstack(inputs, num=num_steps, axis=1) # outputs, state = tf.contrib.rnn.static_rnn(cell, inputs, # initial_state=self._initial_state) outputs = [] with tf.variable_scope("RNN"): for time_step in range(self.num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size]) return output, state
tensorflow.get_variable_scope
548
import tensorflow as tf #print(image.shape) #print(label.shape) images,labels=tf.train.shuffle_batch([image,label], batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_test_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) class trainwork(object): def __init__(self): with tf.variable_scope('scop'): self.w1=tf.get_variable('w1', [4096,1024],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0)) self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0))
tensorflow.train.batch
549
import tensorflow as tf def TestModel(seq2seq): with self.test_session(graph=tf.Graph()) as sess: tf.set_random_seed(111) random.seed(111) np.random.seed(111) enc_inp = [tf.constant(i + 1, tf.int32, shape=[batch_size]) for i in range(num_enc_timesteps)] dec_inp_fp_true = [tf.constant(i, tf.int32, shape=[batch_size]) for i in range(num_dec_timesteps)] dec_inp_holder_fp_false = [tf.placeholder(tf.int32, shape=[batch_size]) for _ in range(num_dec_timesteps)]
tensorflow.constant
550
import tensorflow as tf b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer) h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha def _selector(self, context, h, reuse=False):
tensorflow.nn.softmax
551
import tensorflow as tf if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
tensorflow.nn.bias_add
552
import tensorflow as tf fname = 'model.tf' dst_nodes = ['output/predictions'] saver = tf.train.Saver()
tensorflow.train.Saver
553
import tensorflow as tf tf.broadcast_to(self.unk_id, tf.shape(tokens)), tokens) # Create initial candidate list. candidates = tf.map_fn( self._MergeTokens, (tokens[:-1], tokens[1:]), dtype=tokens.dtype) def _ShouldMerge(unused_tokens, candidates): """Merge until not possible, or we abort early according to merge_prob.""" return tf.logical_and( tf.reduce_any(tf.not_equal(candidates, NO_TOKEN)), tf.random.uniform([]) < self._merge_prob) def _MergeOneToken(tokens, i): return tf.expand_dims( self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1) def _MergeCandidates(tokens, candidates): """Merge in the reverse binary tree.""" best_id = tf.argmin(candidates, output_type=tf.int32) # Perform the merge at position best_id.
tensorflow.random.uniform
554
import tensorflow as tf def relu(inputdata, name=None): """ :param name: :param inputdata: :return: """ return tf.nn.relu(features=inputdata, name=name) @staticmethod def sigmoid(inputdata, name=None): """ :param name:
tensorflow.nn.relu
555
import tensorflow as tf self.obs_space = N_S self.act_space = N_A self.k = 16 self.g_dim = 256 self.c = 10 self.vf_hidden_size = 128 # for value function network self.alpha = 0.5 # for build loss self.batch_processor = FeudalBatchProcessor(self.c) self.build_model() # build feudal policy model with tf.name_scope('local_grad'): grads = tf.gradients(self.loss, self.var_list) grads, _ = tf.clip_by_global_norm(grads, 40) with tf.name_scope('sync'): # worker和global的同步过程 with tf.name_scope('pull'): # 获取global参数,复制到local—net self.pull_params_op = tf.group(*[v1.assign(v2) for v1, v2 in zip(self.var_list, globalAC.var_list)]) with tf.name_scope('push'): # 将参数传送到gloabl中去 self.update_params_op = OPT.apply_gradients(zip(grads, globalAC.var_list)) # 其中传送的是local—net的actor和critic的参数梯度grads,具体计算在上面定义 # apply_gradients是tf.train.Optimizer中自带的功能函数,将求得的梯度参数更新到global中 self.inc_step = self.global_step.assign_add(tf.shape(self.obs)[0]) self.train_op = tf.group(self.update_params_op, self.inc_step) # GLOBALE_STEP += tf.shape(self.obs)[0] def build_model(self): """
tensorflow.name_scope
556
import tensorflow as tf file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder)
tensorflow.logging.info
557
import tensorflow as tf ---------- x: input tensor. Returns ------- A tensor. """ zero = _to_tensor(0., x.dtype.base_dtype) inf = _to_tensor(np.inf, x.dtype.base_dtype) x = tf.clip_by_value(x, zero, inf) return tf.sqrt(x) def var(x, axis=None, keepdims=False): """Variance of a tensor, alongside the specified axis. Parameters ----------
tensorflow.clip_by_value
558
import tensorflow as tf with self.test_session(graph=tf.Graph()) as sess: # Restores from MetaGraphDef. new_saver = tf.train.import_meta_graph(filename) # Generates a new MetaGraphDef. new_saver.export_meta_graph() # Restores from checkpoint. new_saver.restore(sess, saver0_ckpt) # Addes loss and train. labels = tf.constant(0, tf.int32, shape=[100], name="labels") batch_size = tf.size(labels) labels = tf.expand_dims(labels, 1) indices = tf.expand_dims(tf.range(0, batch_size), 1) concated = tf.concat(1, [indices, labels]) onehot_labels = tf.sparse_to_dense( concated, tf.pack([batch_size, 10]), 1.0, 0.0) logits = tf.get_collection("logits")[0]
tensorflow.constant
559
import tensorflow as tf step_model: (DQNPolicy) Policy for evaluation """ n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n with tf.variable_scope("input", reuse=reuse): stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
tensorflow.variable_scope
560
import tensorflow as tf # Zero out entries of the loss where labels_difference zero (so loss is only # computed on pairs with different labels). loss = tf.reduce_mean(tf.abs(labels_difference) * weighted_loss, 0) * 0.5 loss = tf.reshape(loss, original_shape) return loss, {}
tensorflow.abs
561
import tensorflow as tf tt_rank = tt_rank.astype(int) var = np.prod(tt_rank) # Empirically entries of a TT tensor with cores initialized from N(0, 1) # will have variances np.prod(tt_rank) and mean 0. # We scale each TT-core to obtain the desired stddev cr_exponent = -1.0 / (2 * num_dims) var = np.prod(tt_rank ** cr_exponent) core_stddev = stddev ** (1.0 / num_dims) * var with tf.name_scope(name): tt = matrix_with_random_cores(shape, tt_rank=tt_rank, stddev=core_stddev, dtype=dtype) if np.abs(mean) < 1e-8: return tt else: raise NotImplementedError('non-zero mean is not supported yet') def random_matrix_batch(shape, tt_rank=2, batch_size=1, mean=0., stddev=1.,
tensorflow.name_scope
562
import tensorflow as tf num_convs = 2 decoder_features = slim.repeat( tf.concat(decoder_features_list, 3), num_convs,
tensorflow.concat
563
import tensorflow as tf # Calculate manager output g x = tf.expand_dims(self.s, [0]) self.manager_lstm = SingleStepLSTM(x, self.g_dim, step_size=tf.shape(self.obs)[:1]) g_hat = self.manager_lstm.output self.g = tf.nn.l2_normalize(g_hat, dim=1) self.manager_vf = self.build_value(g_hat) def build_worker(self): with tf.variable_scope('worker'):
tensorflow.nn.l2_normalize
564
import tensorflow as tf def _evaluate_spherical_harmonics_branch(degree, order, theta, phi, sign_order, var_type=tf.float64): sqrt_2 = tf.constant(1.41421356237, dtype=var_type) order_float = tf.cast(order, dtype=var_type) tmp = sqrt_2 * _spherical_harmonics_normalization( degree, order, var_type) * evaluate_legendre_polynomial( degree, order, tf.cos(theta)) positive = tmp * tf.cos(order_float * phi) negative = tmp * tf.sin(order_float * phi) return tf.where(tf.greater(sign_order, 0), positive, negative) def evaluate_spherical_harmonics( degree_l: TensorLike, order_m: TensorLike, theta: TensorLike, phi: TensorLike, name: str = "spherical_harmonics_evaluate_spherical_harmonics") -> TensorLike: # pylint: disable=line-too-long
tensorflow.cos
565
import tensorflow as tf # now we wait for all workers to finish # we create an empty dataset and wait # until we collected as many observations in it # as there were points in the batch all_new_data = Dataset( tf.zeros((0, initial_data.query_points.shape[1]), tf.float64), tf.zeros((0, initial_data.observations.shape[1]), tf.float64), ) while len(all_new_data) < num_workers: # this line blocks the process until new data is available in the queue
tensorflow.zeros
566
import tensorflow as tf outer = tf.matrix_band_part(outer, 0, self.max_a_len) self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
tensorflow.reduce_max
567
import tensorflow as tf "input_ids": tf.FixedLenFeature([FLAGS.max_seq_length], tf.int64), "input_mask": tf.FixedLenFeature([FLAGS.max_seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([FLAGS.max_seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64),
tensorflow.FixedLenFeature
568
import tensorflow as tf sigma*(2*pi)^(1/2) ''' def gaussian_pdf(mean, loc_std, sample): Z = 1.0 / (loc_std * tf.sqrt(2.0 * np.pi)) a = - tf.square(sample - mean) / (2.0 * tf.square(loc_std)) return Z * tf.exp(a) class ACNet:
tensorflow.square
569
import tensorflow as tf 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] gaussian_kernel = partial(util.gaussian_kernel_matrix, sigmas=tf.constant(sigmas)) loss_value = maximum_mean_discrepancy(source_samples, target_samples, kernel=gaussian_kernel) loss_value = tf.maximum(1e-4, loss_value) * weight assert_op = tf.Assert(tf.is_finite(loss_value), [loss_value]) with tf.control_dependencies([assert_op]): tag = 'MMD_Loss' barrier = tf.no_op(tag)
tensorflow.maximum
570
import tensorflow as tf truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3), [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1')) truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3), [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2')) truthoutput_h3 = lrelu(deconv2d(tf.concat([truthoutput_h2, tgtctx_h1], 3), [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) truthoutput_h4 = deconv2d(tf.concat([truthoutput_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3 mean, var = tf.nn.moments(tgtimg_z, axes=[0]) print(var.get_shape()) # self.simloss /= tf.reduce_mean(var) print(tgtimg_z.get_shape())
tensorflow.concat
571
from tensorflow.python.platform import tf_logging as logging return False if latest_path is not None and latest_path == self._latest_path: logging.debug("Skipping evaluation due to same checkpoint %s for step %d " "as for step %d.", latest_path, step,
tensorflow.python.platform.tf_logging.debug
572
import tensorflow as tf pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss) return final_loss, cstr_pct def contra_traj_lossV7(pred, tgt, horizon=12, temp=100): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) unorm_w = tf.exp((tgt_flat1 + tgt_flat2)/temp)
tensorflow.reshape
573
import tensorflow as tf d_real=d_real, d_fake=d_fake, d_real_logits=d_real_logits, d_fake_logits=d_fake_logits) penalty_loss = penalty_lib.get_penalty_loss( x=images, x_fake=generated, y=y, is_training=is_training, discriminator=self.discriminator, architecture=self._architecture) self.d_loss += self._lambda * penalty_loss z_projs = tf.concat([z_projs_real, z_projs_fake], 0) z_aug_projs = tf.concat([z_aug_projs_real, z_aug_projs_fake], 0) sims_logits = tf.matmul(z_projs, z_aug_projs, transpose_b=True) logits_max = tf.reduce_max(sims_logits,1) sims_logits = sims_logits - tf.reshape(logits_max, [-1, 1]) sims_probs = tf.nn.softmax(sims_logits)
tensorflow.concat
574
import tensorflow as tf input_size = inputs.get_shape()[2].value dtype = inputs.dtype x = inputs x0 = tf.transpose(x, perm=[1, 2,0]) # (num_nodes, total_arg_size, batch_size) x0 = tf.reshape(x0, shape=[self._num_nodes, input_size * batch_size]) x = tf.expand_dims(x0, axis=0) scope = tf.get_variable_scope() with tf.variable_scope(scope): if self._max_diffusion_step == 0: pass
tensorflow.expand_dims
575
import tensorflow as tf # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator return (loss, per_example_loss, log_probs)
tensorflow.reduce_sum
576
import tensorflow as tf # a_fc3_ = tf.layers.dense(a_fc2_, 64, tf.nn.relu, kernel_initializer=w_initializer, # bias_initializer=b_initializer, name='agent_fc3_t') self.q_next = tf.layers.dense(a_fc1_, self.num_a, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='q_t') # [batch*n_agents, 1] self.q_selected = tf.reduce_sum(tf.multiply(self.q_eval, self.a), axis=1) # ------------------ build mixing_net ------------------ with tf.variable_scope('mixing_net'): # [batch, n_agents] self.q_concat = tf.reshape(self.q_selected, [-1, self.n_agents]) self.q_concat_ =tf.reshape(self.q_m_, [-1, self.n_agents]) with tf.variable_scope('eval_hyper'): self.Q_tot = Qmix_mixer(self.q_concat, self.S, self.num_global_s, self.n_agents, 32) with tf.variable_scope('target_hyper'):
tensorflow.variable_scope
577
import tensorflow as tf # activation conv = activation(conv) conv = tf.squeeze(conv, squeeze_dims=[2]) convolutions.append(conv)
tensorflow.squeeze
578
import tensorflow as tf flattened_image_features = slim.dropout(flattened_image_features, keep_prob=self._dropout_keep_prob, is_training=self._is_training) with slim.arg_scope(self._fc_hyperparams): box_encodings = slim.fully_connected( flattened_image_features, self._num_classes * self._box_code_size, activation_fn=None, scope='BoxEncodingPredictor') class_predictions_with_background = slim.fully_connected( flattened_image_features, self._num_classes + 1, activation_fn=None, scope='ClassPredictor') box_encodings = tf.reshape( box_encodings, [-1, 1, self._num_classes, self._box_code_size]) class_predictions_with_background = tf.reshape( class_predictions_with_background, [-1, 1, self._num_classes + 1]) predictions_dict = { BOX_ENCODINGS: box_encodings, CLASS_PREDICTIONS_WITH_BACKGROUND: class_predictions_with_background } if self._predict_instance_masks: with slim.arg_scope(self._conv_hyperparams): upsampled_features = tf.image.resize_bilinear( image_features,
tensorflow.reshape
579
import tensorflow as tf differences = self.generator_out - self.real_pc interpolates = self.real_pc + (alpha * differences) with tf.variable_scope('discriminator') as scope: gradients = tf.gradients(self.discriminator(interpolates, reuse=True, scope=scope, **disc_kwargs)[1], [interpolates])[0] # Reduce over all but the first dimension slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=list(range(1, ndims)))) gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2) self.loss_d_rot += lam * gradient_penalty train_vars = tf.trainable_variables() d_params = [v for v in train_vars if v.name.startswith(name + '/discriminator/')] g_params = [v for v in train_vars if v.name.startswith(name + '/generator/')]
tensorflow.square
580
import tensorflow as tf c = util.shape(top_antecedents, 1) feature_emb_list = [] if self.config["use_metadata"]: top_antecedent_speaker_ids = tf.gather(top_span_speaker_ids, top_antecedents) # [k, c] same_speaker = tf.equal(tf.expand_dims(top_span_speaker_ids, 1), top_antecedent_speaker_ids) # [k, c] speaker_pair_emb = tf.gather(tf.get_variable("same_speaker_emb", [2, self.config["feature_size"]]), tf.to_int32(same_speaker)) # [k, c, emb] feature_emb_list.append(speaker_pair_emb) tiled_genre_emb = tf.tile(tf.expand_dims(tf.expand_dims(genre_emb, 0), 0), [k, c, 1]) # [k, c, emb] feature_emb_list.append(tiled_genre_emb) if self.config["use_features"]: antecedent_distance_buckets = self.bucket_distance(top_antecedent_offsets) # [k, c] antecedent_distance_emb = tf.gather(tf.get_variable("antecedent_distance_emb", [10, self.config["feature_size"]]), antecedent_distance_buckets) # [k, c] feature_emb_list.append(antecedent_distance_emb) feature_emb = tf.concat(feature_emb_list, 2) # [k, c, emb] feature_emb = tf.nn.dropout(feature_emb, self.dropout) # [k, c, emb]
tensorflow.expand_dims
581
from tensorflow.python.ops import array_ops ids, math_ops.equal(ids.values, selected_id)) # TODO(ptucker): Make this more efficient, maybe add a sparse version of # tf.equal and tf.reduce_any? # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1. ids_shape = array_ops.shape(ids, out_type=dtypes.int64) ids_last_dim = array_ops.size(ids_shape) - 1 filled_selected_id_shape = math_ops.reduced_shape( ids_shape, array_ops.reshape(ids_last_dim, [1])) # Intersect `ids` with the selected ID. filled_selected_id = array_ops.fill( filled_selected_id_shape, math_ops.to_int64(selected_id)) result = set_ops.set_intersection(filled_selected_id, ids) return ops.SparseTensor( indices=result.indices, values=result.values, shape=ids_shape)
tensorflow.python.ops.array_ops.reshape
582
import tensorflow as tf self.encoder_1 = self.conv2 self.encoder_2 = self.conv3 self.encoder_3 = self.conv4 self.encoder_4 = self.conv5 print("\nEncoder RESNET is built successfully\n\n") @timeit def load_pretrained_weights(self, sess): print("Loading pretrained weights of resnet18") all_vars = tf.trainable_variables() all_vars += tf.get_collection('mu_sigma_bn') for v in all_vars: if v.op.name in self.pretrained_weights.keys(): assign_op = v.assign(self.pretrained_weights[v.op.name]) sess.run(assign_op) print(v.op.name + " - loaded successfully") print("All pretrained weights of resnet18 is loaded") def _residual_block(self, name, x, filters, pool_first=False, strides=1, dilation=1):
tensorflow.trainable_variables
583
import tensorflow as tf ) dialogue_state_size = conv3.size + \ 3 * histories_embedding_size * conv_mul dialogue_state = tf.nn.relu(dialogue_state) dialogue_state = dropout(dialogue_state, self.dropout_keep_prob) # action prediction
tensorflow.nn.relu
584
import tensorflow as tf self.opt_pred = self.optimizer(lr_pred, beta, self.real_pc_rot_loss, rot_params, batch) #only use real pics to update self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=None) self.init = tf.global_variables_initializer() #Launch the session config = tf.ConfigProto(allow_soft_placement = True) config.gpu_options.allow_growth = True self.sess = tf.Session(config=config, graph=self.graph) self.sess.run(self.init)
tensorflow.ConfigProto
585
import tensorflow as tf im = (im + 1.0) * 128 im = tf.clip_by_value(im, 0, 255)
tensorflow.clip_by_value
586
import tensorflow as tf loss = tf.math.reduce_mean( distance_utils.compute_gaussian_kl_divergence( means, stddevs, rhs_means=prior_mean, rhs_stddevs=prior_stddev)) weighted_loss = loss_weight * loss summaries = { 'regularization_loss/KL/PriorMean/Mean': tf.math.reduce_mean(tf.constant(prior_mean)), 'regularization_loss/KL/PriorVar/Mean': tf.math.reduce_mean(tf.constant(prior_stddev)**2), 'regularization_loss/KL/Loss/Original': loss, 'regularization_loss/KL/Loss/Weighted': weighted_loss, 'regularization_loss/KL/Loss/Weight': tf.constant(loss_weight), } return weighted_loss, summaries def compute_positive_pairwise_loss(anchor_embeddings, positive_embeddings, loss_weight, distance_fn=functools.partial( distance_utils.compute_l2_distances, squared=True)): """Computes anchor/positive pairwise (squared L2) loss. Args:
tensorflow.constant
587
import tensorflow as tf """ s = sqrt_diag if diag else sqrt kl_batch = gauss_kl(mu,s,K if shared_k else K_batch) kl_sum = [] for n in range(Datum.N): kl_sum.append(gauss_kl(mu[:, n][:,None], # M x 1 sqrt_diag[:, n][:, None] if diag else sqrt[n, :, :][None, :, :], # 1 x M x M or M x 1 K if shared_k else K_batch[n, :, :][None,:,:])) # 1 x M x M or M x M kl_sum =tf.reduce_sum(kl_sum) assert_almost_equal(kl_sum.eval(), kl_batch.eval()) def tf_kl_1d(q_mu, q_sigma, p_var=1.0): p_var = tf.ones_like(q_sigma) if p_var is None else p_var q_var = tf.square(q_sigma) kl = 0.5 * (q_var / p_var + tf.square(q_mu) / p_var - 1 + tf.log(p_var / q_var)) return tf.reduce_sum(kl) @pytest.mark.parametrize('white', [True, False]) def test_oned(session_tf, white, mu, sqrt, K_batch): """ Check that the KL divergence matches a 1D by-hand calculation. """ m = 0 mu1d = mu[m,:][None,:] # 1 x N s1d = sqrt[:,m,m][:,None,None] # N x 1 x 1 K1d = K_batch[:,m,m][:,None,None] # N x 1 x 1 kl = gauss_kl(mu1d,s1d,K1d if not white else None)
tensorflow.log
588
import tensorflow as tf img_batch=tf.expand_dims(img[0, :, :, :], axis=0), boxes=gtboxes_and_label_h[0, :, :-1], labels=gtboxes_and_label_h[0, :, -1], method=0) tf.summary.image('Compare/gtboxes_h_gpu:%d' % i, gtboxes_in_img_h) if cfgs.ADD_BOX_IN_TENSORBOARD: detections_in_img = self.drawer.draw_boxes_with_categories_and_scores(
tensorflow.summary.image
589
import tensorflow as tf loss = loss_pg + loss_vf + loss_entropy opt = tf.train.AdamOptimizer(self.LR) self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params) self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)] self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)] self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', loss_entropy) tf.summary.scalar('Loss/Total', loss) tf.summary.scalar('Var/Epsilon', epsilon_decay) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net
tensorflow.summary.scalar
590
import tensorflow as tf decoder_features = _split_separable_conv2d( tf.concat(decoder_features_list, 3),
tensorflow.concat
591
import tensorflow as tf if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
tensorflow.ones_like
592
import tensorflow as tf if not reader: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)), }
tensorflow.FixedLenFeature
593
import tensorflow as tf elif ord == 2: red_ind = list(range(1, len(x.get_shape()))) avoid_zero_div = 1e-8 square = tf.maximum(avoid_zero_div, reduce_sum(tf.square(grad), reduction_indices=red_ind, keepdims=True)) normalized_grad = old_div(grad, tf.sqrt(square)) else: normalized_grad = tf.sign(grad) normalized_grad = tf.stop_gradient(normalized_grad) scaled_grad = eps * normalized_grad #目标是让loss下降 adv_x = x - scaled_grad if (clip_min is not None) and (clip_max is not None): adv_x = tf.clip_by_value(adv_x, clip_min, clip_max)
tensorflow.stop_gradient
594
import tensorflow as tf def general_deconv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm = True, relu_factor = 0, name="deconv2d"): with tf.variable_scope(name): deconv = tf.layers.conv2d_transpose(input_data, filters, kernel_size, (stride, stride), padding, activation = None)
tensorflow.layers.conv2d_transpose
595
from tensorflow.python.framework import tensor_shape if input_shape.ndims is None: return [tensor_shape.unknown_shape()]
tensorflow.python.framework.tensor_shape.unknown_shape
596
import tensorflow as tf box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2. box_x2y2 = box_xy + box_wh / 2. box = tf.concat([box_x1y1, box_x2y2], axis=-1) boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4))) objects.append(tf.reshape(obj, (x_shape[0], -1, 1))) classes.append(tf.reshape(cls, (x_shape[0], -1, num_classes))) boxes = tf.concat(boxes, axis=1) objects = tf.concat(objects, axis=1) classes = tf.concat(classes, axis=1) scores = objects * classes boxes, scores, classes, valid = tf.image.combined_non_max_suppression( boxes=boxes, scores=scores, max_output_size_per_class=max_outputs, max_total_size=max_outputs,
tensorflow.concat
597
import tensorflow as tf tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") class InputExample(object): def __init__(self, unique_id, text): self.unique_id = unique_id self.text = text
tensorflow.flags.DEFINE_string
598
import tensorflow as tf train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode,
tensorflow.metrics.accuracy
599