seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf name="relabel_task_optimal", data=relabel_opt_frac, step=global_step) # What are the average Q values of the original tasks? if batch_size == num_tasks: indices = tf.transpose(tf.stack([orig_indices, orig_indices], axis=0)) orig_q_vals = tf.gather_nd(logits_vec, indices) tf.compat.v2.summary.scalar( name="orig_q_vals", data=tf.reduce_mean(orig_q_vals), step=global_step,
tensorflow.gather_nd
3,000
import tensorflow as tf def log_loss_custom(predictions, labels, eps=1e-7, name='log'): """Define a log loss. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D or array tensor, [batch_size, num_classes] ground truth labels or target labels. eps: a constant to set upper or lower limit for labels, smoothening factor name: Optional scope/name for op_scope. Returns: A tensor with the log loss. """ with tf.name_scope(name): predictions = tf.to_float(predictions) labels = tf.to_float(labels) predictions = tf.clip_by_value(predictions, eps, 1 - eps) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) loss = -tf.reduce_mean(labels * tf.log(predictions)) return loss def log_loss_tf(predictions, labels, eps=1e-7, weights=1.0, name='log_loss'): """Define a log loss. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network .
tensorflow.to_float
3,001
from tensorflow.python.framework import ops tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fn, fn_update = _streaming_sparse_false_negative_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fn_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def _streaming_sparse_precision_at_k(top_k_idx, labels, k=None, class_id=None, ignore_mask=None, weights=None, metrics_collections=None, updates_collections=None, name=None):
tensorflow.python.framework.ops.add_to_collections
3,002
import tensorflow as tf def _build_word_embeddings(self): projection_dim = self.options['lstm']['projection_dim'] # the word embeddings with tf.device("/cpu:0"): self.embedding_weights = tf.get_variable( "embedding", [self._n_tokens_vocab, projection_dim], dtype=DTYPE, ) self.embedding = tf.nn.embedding_lookup(self.embedding_weights,
tensorflow.get_variable
3,003
import tensorflow as tf # Flatten CNN and concat with other features zack_hack_div_2 = 0 if cnn_rnn_zack: zack_hack_div_2 = zack_hack // 2 cnn_output = tf.slice(cnn_output, [0, zack_hack_div_2, 0, 0], [-1, rnn_nunroll, -1, -1]) nfeats_conv = reduce(lambda x, y: x * y, [int(x) for x in cnn_output.get_shape()[-2:]]) else: nfeats_conv = reduce(lambda x, y: x * y, [int(x) for x in cnn_output.get_shape()[-3:]]) feats_conv = tf.reshape(cnn_output, [batch_size * rnn_nunroll, nfeats_conv]) nfeats_tot = nfeats_conv + nfeats feats_all = tf.concat(1, [feats_conv, feats_other]) print('feats_cnn: {}'.format(feats_conv.get_shape())) print('feats_all: {}'.format(feats_all.get_shape())) # Project to RNN size rnn_output = feats_all rnn_output_size = nfeats_tot if do_rnn: with tf.variable_scope('rnn_proj'): rnn_proj_w = tf.get_variable('W', [nfeats_tot, rnn_size], initializer=tf.uniform_unit_scaling_initializer(factor=1.0, dtype=dtype), dtype=dtype) rnn_proj_b = tf.get_variable('b', [rnn_size], initializer=tf.constant_initializer(0.0), dtype=dtype)
tensorflow.concat
3,004
import tensorflow as tf tf.constant_initializer(0.0)) biased = tf.reshape( tf.nn.bias_add( conv, biases, data_format=self.data_format),
tensorflow.nn.bias_add
3,005
import tensorflow as tf print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape()) return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better
tensorflow.reduce_sum
3,006
import tensorflow as tf cutout_center_height = tf.random.uniform( shape=[], minval=0, maxval=image_height, dtype=tf.int32) cutout_center_width = tf.random.uniform( shape=[], minval=0, maxval=image_width, dtype=tf.int32) lower_pad = tf.maximum(0, cutout_center_height - length // 2) upper_pad = tf.maximum(0, image_height - cutout_center_height - length // 2) left_pad = tf.maximum(0, cutout_center_width - length // 2) right_pad = tf.maximum(0, image_width - cutout_center_width - length // 2) cutout_shape = [image_height - (lower_pad + upper_pad), image_width - (left_pad + right_pad)] padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] mask = tf.pad( tf.zeros(cutout_shape, dtype=images.dtype),
tensorflow.maximum
3,007
import tensorflow as tf l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) l2 = tf.matmul(l1, self.w2)+self.b2 l2=tf.nn.relu(l2) l3=tf.matmul(l2, self.w3)+self.b3 l3=tf.nn.relu(l3) out=tf.matmul(l3, self.w4)+self.b4 return out def valid_inference(self,images):
tensorflow.nn.relu
3,008
import tensorflow as tf def __init__( self, inputs=None, train_labels=None, vocabulary_size=80000, embedding_size=200, num_sampled=64, nce_loss_args=None, E_init=tf.random_uniform_initializer(minval=-1.0, maxval=1.0), E_init_args=None, nce_W_init=tf.truncated_normal_initializer(stddev=0.03), nce_W_init_args=None, nce_b_init=tf.constant_initializer(value=0.0), nce_b_init_args=None, name='word2vec', ): if nce_loss_args is None: nce_loss_args = {} if E_init_args is None: E_init_args = {}
tensorflow.truncated_normal_initializer
3,009
import tensorflow as tf def joint_mse_loss(y_pred, y_true, true_weight): """ 损失函数想要表达的意思: 输出的特征图数量为关键点的数量,意味着输出的是每一个像素属于各个关键点的置信度 """ batch_size = y_pred.shape[0] num_of_joints = y_pred.shape[-1] # 有多少个关键点 y_pred = tf.reshape(y_pred, shape=(batch_size, -1, num_of_joints)) # 合并宽和高 heatmap_pred_list = tf.split(value=y_pred, num_or_size_splits=num_of_joints, axis=-1) # 拆分每一个关键点的特征图 [batch_size, -1, 1] y_true = tf.reshape(y_true, shape=(batch_size, -1, num_of_joints)) heatmap_true_list = tf.split(value=y_true, # y_true执行与y_pred相同的操作 num_or_size_splits=num_of_joints,
tensorflow.reshape
3,010
import tensorflow as tf high = constraint[key][1] constraint_tf[key] = (tf.constant(low, dtype=tf.float64), tf.constant(high, dtype=tf.float64)) print("N.B.: using direct data entry") likelihood = sum_pdf(data, nsig, sigmean, sigwidth, nbkg, m0, argpar, constraint_tf['mes'][0], constraint_tf['mes'][1]) nll = tf.neg(tf.reduce_sum(tf.log(likelihood)), name="nll") variables = tf.all_variables() grads = tf.gradients(nll, variables)
tensorflow.log
3,011
from tensorflow.core.framework import function_pb2 Args: graph: Graph. inputs: List of tensors. Inputs to the function. outputs: List of tensors. Outputs of the function. out_names: Optional list of string names for the outputs. Returns: A FunctionDef protocol buffer. Raises: ValueError: if out_names is specified and the wrong length. """ func = function_pb2.FunctionDef() func.signature.name = "_" used_names = set() func.signature.input_arg.extend([_tensor_to_argdef(i, used_names=used_names) for i in inputs]) if out_names is None: used_names = set() func.signature.output_arg.extend([ _tensor_to_argdef(o, used_names=used_names) for o in outputs]) elif len(outputs) != len(out_names): raise ValueError( "Length of out_names (%d) does not match number of outputs (%d): %s" % (len(out_names), len(outputs), ", ".join(out_names)))
tensorflow.core.framework.function_pb2.FunctionDef
3,012
import tensorflow as tf function ensures each probability is at least eps and no more than one before taking the log. Args: y: matrix of true probabilities same size as probs probs: matrix of probabilities for the minibatch eps: value to clip the probabilities at class_weights: vector of relative weights to be assigned to each class sumd: dimensions along which to sum the x-ent matrix Returns: cross entropy loss for each example in the minibatch """ adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps) xent_mat = -y * tf.log(adjusted_probs) if class_weights is not None: xent_mat *= class_weights return tf.reduce_sum(xent_mat, sumd) def _SafeNegEntropy(probs, batch_size, eps=0.0001): """Computes negative entropy in a way that will not overflow.""" adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps) entropy = tf.mul(probs, tf.log(adjusted_probs)) return tf.reduce_sum(entropy) / batch_size
tensorflow.log
3,013
import tensorflow as tf key = tf.constant('image_000000') class_label = tf.random_uniform(
tensorflow.random_uniform
3,014
import tensorflow as tf bw_result = directional_attention_with_selections( rep_tensor, rep_mask, dep_selection, head_selection, 'backward', hn, keep_unselected, 'backward_resa', keep_prob, is_train, wd, activation ) return tf.concat([fw_result, bw_result], -1) def directional_attention_with_selections( rep_tensor, rep_mask, dep_selection, head_selection, direction=None, hn=None, keep_unselected=True, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu'): bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] org_ivec = rep_tensor.get_shape().as_list()[2] ivec = hn or org_ivec with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'): # non-linear rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) # ensure the seletion is right dep_selection = tf.logical_and(rep_mask, dep_selection) head_selection = tf.logical_and(rep_mask, head_selection) rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection)
tensorflow.shape
3,015
import tensorflow as tf assert var.name == var_name_n_prune_ratio[0], \ 'unmatched variable names: %s vs. %s' % (var.name, var_name_n_prune_ratio[0]) prune_ratio = self.__calc_prune_ratio_dyn(var_name_n_prune_ratio[1]) # create a mask and non-masked backup for each variable name = var.name.replace(':0', '_mask') mask = tf.get_variable(name, initializer=tf.ones(var.shape), trainable=False) name = var.name.replace(':0', '_var_bkup') var_bkup = tf.get_variable(name, initializer=var.initialized_value(), trainable=False) # create update operations var_bkup_update_op = var_bkup.assign(tf.where(mask > 0.5, var, var_bkup)) with tf.control_dependencies([var_bkup_update_op]): mask_thres = tf.contrib.distributions.percentile(tf.abs(var_bkup), prune_ratio * 100) mask_update_op = mask.assign(tf.cast(tf.abs(var_bkup) > mask_thres, tf.float32)) with tf.control_dependencies([mask_update_op]): prune_op = var.assign(var_bkup * mask) # record pruning masks & operations masks += [mask] prune_ops += [prune_op] return masks, tf.group(prune_ops)
tensorflow.control_dependencies
3,016
import tensorflow as tf self.ri = tf.placeholder(tf.float32, (None,)) self.s_diff = tf.placeholder(tf.float32, (None, self.g_dim)) def build_perception(self): self._obs = tf.expand_dims(self.obs, -1) # ! self._obs = tf.expand_dims(self._obs, -1) # ! conv1 = tf.layers.conv2d(inputs=self._obs, filters=16,
tensorflow.expand_dims
3,017
from tensorflow.python.ops import math_ops precision_sum = math_ops.reduce_sum( relevant_precision_per_k, reduction_indices=(-1,), name='precision_sum') # Divide by number of relevant items to get average precision. These are # the "num_relevant_items" and "AveP" terms from the formula above. num_relevant_items = math_ops.to_double(num_relevant(labels, k)) return math_ops.div(precision_sum, num_relevant_items, name=scope) def streaming_sparse_average_precision_at_k(predictions, labels, k,
tensorflow.python.ops.math_ops.div
3,018
import tensorflow as tf if average_across_batch: cost /= tf.to_float(batch_size)
tensorflow.to_float
3,019
import tensorflow as tf # Now we construct the copy model. batch_size = 8 inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)] with tf.variable_scope("root"): _, losses = SampleGRUSeq2Seq(inp, out, weights) updates = [] params = tf.global_variables() optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5) for i in range(len(buckets)): full_grads = tf.gradients(losses[i], params) grads, _ = tf.clip_by_global_norm(full_grads, 30.0) update = optimizer.apply_gradients(zip(grads, params)) updates.append(update) sess.run([tf.global_variables_initializer()]) steps = 6 for _ in range(steps): bucket = random.choice(np.arange(len(buckets)))
tensorflow.train.AdamOptimizer
3,020
import tensorflow as tf Returns: Variable Tensor """ if use_xavier: initializer = tf.contrib.layers.xavier_initializer() var = _variable_on_cpu(name, shape, initializer) else: # initializer = tf.truncated_normal_initializer(stddev=stddev) with tf.device('/cpu:0'): var = tf.truncated_normal(shape, stddev=np.sqrt(2 / shape[-1])) var = tf.round(var * tf.constant(1000, dtype=tf.float32)) / tf.constant(1000, dtype=tf.float32) var = tf.Variable(var, name='weights') if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def conv1d(inputs, num_output_channels, kernel_size, scope, stride=1, padding='SAME', use_xavier=True, stddev=1e-3, weight_decay=0.0, activation_fn=tf.nn.relu,
tensorflow.add_to_collection
3,021
import tensorflow as tf scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) if return_alphas: return output, scores return output def self_attention(facts, ATTENTION_SIZE, mask, stag='null'): if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1)
tensorflow.shape
3,022
from tensorflow.python.framework import tensor_shape def _UnsortedSegmentSumShape(op): """Shape function for UnsortedSegmentSum.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape() mid = segment_ids_shape.ndims if mid is None: return [tensor_shape.unknown_shape()] else: num_segments = tensor_util.ConstantValue(op.inputs[2]) return [tensor_shape.TensorShape([num_segments]).concatenate( data_shape[mid:])] @ops.RegisterShape("LinSpace") def _LinspaceShape(op): num = tensor_util.ConstantValue(op.inputs[2]) return [tensor_shape.vector(num)]
tensorflow.python.framework.tensor_shape.TensorShape
3,023
import tensorflow as tf 'save_summary_steps', 500, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_checkpoints_secs', 7200, 'The frequency with which the model is saved, in seconds.') # model related configuration tf.app.flags.DEFINE_integer( 'train_image_size', 352, 'The size of the input image for the model to use.') tf.app.flags.DEFINE_integer( 'resnet_size', 50, 'The size of the ResNet model to use.') tf.app.flags.DEFINE_integer( 'train_epochs', None, 'The number of epochs to use for training.') tf.app.flags.DEFINE_integer( 'batch_size', 12, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_string( 'data_format', 'channels_first', # 'channels_first' or 'channels_last' 'A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible ' 'with CPU. If left unspecified, the data format will be chosen ' 'automatically based on whether TensorFlow was built for CPU or GPU.') tf.app.flags.DEFINE_float( 'negative_ratio', 3., 'Negative ratio in the loss function.') tf.app.flags.DEFINE_float( 'match_threshold', 0.56, 'Matching threshold in the loss function.') tf.app.flags.DEFINE_float( 'neg_threshold', 0.4, 'Matching threshold for the negtive examples in the loss function.')
tensorflow.app.flags.DEFINE_integer
3,024
import tensorflow as tf def __call__(self, global_step): warmup_lr = self._params.warmup_learning_rate warmup_steps = self._params.warmup_steps init_lr = self._params.init_learning_rate lr_levels = self._params.learning_rate_levels lr_steps = self._params.learning_rate_steps linear_warmup = ( warmup_lr + tf.cast(global_step, dtype=tf.float32) / warmup_steps * (init_lr - warmup_lr)) learning_rate = tf.where(global_step < warmup_steps, linear_warmup, init_lr) for next_learning_rate, start_step in zip(lr_levels, lr_steps): learning_rate = tf.where(global_step >= start_step, next_learning_rate, learning_rate) return learning_rate def get_config(self): return {'_params': self._params.as_dict()}
tensorflow.where
3,025
import tensorflow as tf return tf.data.Dataset.from_tensors((images, labels)) def train(defun=False): model = mnist.create_model(data_format()) if defun: model.call = tfe.defun(model.call) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) dataset = random_dataset() with tf.device(device()): mnist_eager.train(model, optimizer, dataset, step_counter=tf.train.get_or_create_global_step())
tensorflow.train.GradientDescentOptimizer
3,026
import tensorflow as tf truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3), [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1')) truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3), [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2')) truthoutput_h3 = lrelu(deconv2d(tf.concat([truthoutput_h2, tgtctx_h1], 3), [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) truthoutput_h4 = deconv2d(tf.concat([truthoutput_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3 mean, var = tf.nn.moments(tgtimg_z, axes=[0]) print(var.get_shape()) # self.simloss /= tf.reduce_mean(var) print(tgtimg_z.get_shape()) self.out = output_h4# + contextimg#tf.nn.tanh(h4) self.out2 = truthoutput_h4 self.recon1 = tf.nn.l2_loss(tgtimg - self.out) self.recon2 = tf.nn.l2_loss(tgtimg - self.out2) # self.loss = self.recon1 + self.recon2 + self.simloss if ablation_type == "None": self.loss = self.recon1 + self.recon2 + self.simloss
tensorflow.reduce_mean
3,027
import tensorflow as tf with tf.Session(): coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) # Sleep to make sure the queue runner has started the first run call. time.sleep(_SLEEP_TIME) # Session closed. coord.request_stop() coord.join() def test_batcher_closed(self): with tf.Graph().as_default(): @dynamic_batching.batch_fn def f(a): return a f(tf.constant([1])) # Intentionally using tf.Session() instead of self.test_session() to have # control over closing the session. test_session() is a cached session. with tf.Session(): coord = tf.train.Coordinator()
tensorflow.Graph
3,028
import tensorflow as tf in1 = tf.placeholder(tf_input_dtype, [ None, ] + tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT1") # If the input is a string, then convert each string to the # equivalent float value. if tf_input_dtype == tf.string: in0 = tf.strings.to_number(in0, tf.int32) in1 = tf.strings.to_number(in1, tf.int32) add = tf.add(in0, in1, "ADD") sub = tf.subtract(in0, in1, "SUB") # Cast or convert result to the output dtype. if tf_output0_dtype == tf.string: cast0 = tf.dtypes.as_string(add if not swap else sub, name="TOSTR0")
tensorflow.strings.to_number
3,029
import tensorflow as tf return h def deconv2d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-2]]) h = h + b return h def conv3d(x, shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv3d(x, W, strides=[1, stride, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-1]]) h = h + b return h def deconv3d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv3d_transpose(x, W, output_shape, strides=[1, stride, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-2]]) h = h + b return h
tensorflow.nn.conv3d
3,030
import tensorflow as tf def build_cnet(self, state_in, name, reuse=False, batch_size=64): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob) state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_cin = tf.expand_dims(layer_c2, axis=1) out_c, state_final_c = tf.nn.dynamic_rnn(cell=lstm_c, inputs=lstm_cin, initial_state=state_init_c) cell_out_c = tf.reshape(out_c, [-1, 256]) vf = tf.layers.dense(cell_out_c, 1, kernel_regularizer=reg)
tensorflow.nn.rnn_cell.DropoutWrapper
3,031
import tensorflow as tf Clips bounding boxes to image boundaries based on image shape. Args: bboxes: Tensor with shape (num_bboxes, 4) where point order is x1, y1, x2, y2. imshape: Tensor with shape (2, ) where the first value is height and the next is width. Returns Tensor with same shape as bboxes but making sure that none of the bboxes are outside the image. """ with tf.name_scope('BoundingBoxTransform/clip_bboxes'): bboxes = tf.cast(bboxes, dtype=tf.float32) imshape = tf.cast(imshape, dtype=tf.float32) x1, y1, x2, y2 = tf.split(bboxes, 4, axis=1) width = imshape[1] height = imshape[0] x1 = tf.maximum(tf.minimum(x1, width - 1.0), 0.0) x2 = tf.maximum(tf.minimum(x2, width - 1.0), 0.0) y1 = tf.maximum(tf.minimum(y1, height - 1.0), 0.0) y2 = tf.maximum(tf.minimum(y2, height - 1.0), 0.0)
tensorflow.name_scope
3,032
import tensorflow as tf indices_batch = np.random.randint( batch_size, size=num_elements, dtype=np.int64) indices_value = np.arange(num_elements, dtype=np.int64) indices = np.asarray( sorted(zip(indices_batch, indices_value)), dtype=np.int64) values = ["feature_value_for_embedding_lookup"] * num_elements shape = np.asarray([batch_size, num_elements], dtype=np.int64) with tf.Session() as sess: with tf.device("/cpu:0"): indices = tf.Variable(indices) values = tf.Variable(values) shape = tf.Variable(shape) st = tf.SparseTensor(indices, values, shape) st_handles = add_many_sparse_to_tensors_map(st) st_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=st_handles.op, sparse_handles=st_handles) st_roundtrip_op = st_roundtrip.values.op
tensorflow.Variable
3,033
import tensorflow as tf # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) return output def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
tensorflow.shape
3,034
import tensorflow as tf applied = self.apply_step(variables=variables, deltas=perturbation_deltas) with tf.control_dependencies(control_inputs=(applied,)): # Trivial operation to enforce control dependency
tensorflow.control_dependencies
3,035
import tensorflow as tf initializer=embeddings_initializer, dtype=LayersConfig.tf_dtype, **(embeddings_kwargs or {}) # **embeddings_kwargs ) # **(embeddings_kwargs or {}), word_embeddings = tf.nn.embedding_lookup( self.embeddings, self.inputs, name='word_embeddings', ) # Zero out embeddings of pad value masks = tf.not_equal(self.inputs, pad_value, name='masks') word_embeddings *= tf.cast( tf.expand_dims(masks, axis=-1), # tf.float32, dtype=LayersConfig.tf_dtype, ) sum_word_embeddings = tf.reduce_sum(word_embeddings, axis=1) # Count number of non-padding words in each sentence sentence_lengths = tf.count_nonzero( masks, axis=1, keep_dims=True, # dtype=tf.float32, dtype=LayersConfig.tf_dtype, name='sentence_lengths',
tensorflow.expand_dims
3,036
import tensorflow as tf # define train_op gen_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05) dis_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
tensorflow.train.RMSPropOptimizer
3,037
import tensorflow as tf outputs_dict3, _ = tf.nn.seq2seq.one2many_rnn_seq2seq( enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict, embedding_size=2, feed_previous=tf.constant(True)) sess.run([tf.global_variables_initializer()])
tensorflow.constant
3,038
import tensorflow as tf if info: summary = tf.Summary() for k, v in info.items():
tensorflow.Summary
3,039
import tensorflow as tf tf.logging.info("**** Trainable Variables ****")
tensorflow.logging.info
3,040
import tensorflow as tf # placeholder for end of episode mask # this value is 1 if the next state corresponds to the end of an episode, # in which case there is no Q-value at the next state; at the end of an # episode, only the current state reward contributes to the target, not the # next state Q-value (i.e. target is just rew_t_ph, not rew_t_ph + gamma * q_tp1) done_mask_ph = tf.placeholder(tf.float32, [None]) # casting to float on GPU ensures lower data transfer times. obs_t_float = tf.cast(obs_t_ph, tf.float32) / 255.0 obs_tp1_float = tf.cast(obs_tp1_ph, tf.float32) / 255.0 # Here, you should fill in your own code to compute the Bellman error. This requires # evaluating the current and next Q-values and constructing the corresponding error. # TensorFlow will differentiate this error for you, you just need to pass it to the # optimizer. See assignment text for details. # Your code should produce one scalar-valued tensor: total_error # This will be passed to the optimizer in the provided code below. # Your code should also produce two collections of variables:
tensorflow.cast
3,041
import tensorflow as tf @staticmethod def lrelu(inputdata, name, alpha=0.2): """ :param inputdata: :param alpha: :param name: :return: """ with tf.variable_scope(name): return tf.nn.relu(inputdata) - alpha * tf.nn.relu(-inputdata)
tensorflow.nn.relu
3,042
import tensorflow as tf tf.logging.info(message.format(config.logdir)) tf.gfile.MakeDirs(config.logdir)
tensorflow.gfile.MakeDirs
3,043
import tensorflow as tf scale=config.init_mean_factor) logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10) flat_observations = tf.reshape(observations, [ tf.shape(observations)[0], tf.shape(observations)[1], functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)]) with tf.variable_scope("network_parameters"):
tensorflow.shape
3,044
import tensorflow as tf if mode == 'train' and rnn_keep_prob < 1.0: cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=rnn_keep_prob) if rnn_nlayers > 1: cell = tf.nn.rnn_cell.MultiRNNCell([cell] * rnn_nlayers) initial_state = cell.zero_state(batch_size, dtype) # RNN
tensorflow.nn.rnn_cell.MultiRNNCell
3,045
import tensorflow as tf num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), })
tensorflow.constant
3,046
import tensorflow as tf w //= pool_stride h //= pool_stride # Conv 1x1 with tf.variable_scope('conv_0'): X = self._do_conv(X, w, h, ch, conv_ch, filter_size=1, no_reg=True, is_train=is_train) ch = conv_ch # Global conv with tf.variable_scope('conv_1'): X = self._do_conv(X, w, h, ch, global_conv_ch, filter_size=w, no_reg=True, is_train=is_train) ch = global_conv_ch # Global pooling X = self._add_global_avg_pool(X, w, h, ch) # Fully connected with tf.variable_scope('fully_connected'):
tensorflow.variable_scope
3,047
import tensorflow as tf # random flip on a batch of images def batch_random_flip(input_): """Simultaneous horizontal random flip.""" if isinstance(input_, (float, int)): return input_ shape = input_.get_shape().as_list() batch_size = shape[0] height = shape[1] width = shape[2] channels = shape[3] res = tf.split(axis=0, num_or_size_splits=batch_size, value=input_) res = [elem[0, :, :, :] for elem in res] res = [tf.image.random_flip_left_right(elem) for elem in res] res = [tf.reshape(elem, [1, height, width, channels]) for elem in res] res = tf.concat(axis=0, values=res) return res # build a one hot representation corresponding to the integer tensor # the one-hot dimension is appended to the integer tensor shape def as_one_hot(input_, n_indices): """Convert indices to one-hot.""" shape = input_.get_shape().as_list() n_elem = numpy.prod(shape) indices = tf.range(n_elem) indices = tf.cast(indices, tf.int64)
tensorflow.reshape
3,048
import tensorflow as tf A tensor. """ if alpha != 0.: negative_part = tf.nn.relu(-x) x = tf.nn.relu(x) if max_value is not None: max_value = _to_tensor(max_value, x.dtype.base_dtype) zero = _to_tensor(0., x.dtype.base_dtype)
tensorflow.nn.relu
3,049
import tensorflow as tf # Select only unused blocks with tf.variable_scope('select'): stacked_blocks = tf.stack(cell_inputs + blocks)
tensorflow.variable_scope
3,050
import tensorflow as tf indicators &= ( anchor_match_mining_distance_matrix > anchor_positive_mining_distances) def find_hard_distances(distance_matrix, indicator_matrix): distance_matrix = tf.where( tf.stop_gradient(indicator_matrix), distance_matrix, tf.fill(tf.shape(distance_matrix), distance_matrix.dtype.max)) hard_distances = tf.math.reduce_min(distance_matrix, axis=-1) return hard_distances hard_negative_mining_distances = find_hard_distances( anchor_match_mining_distance_matrix, indicators)
tensorflow.shape
3,051
import tensorflow as tf use_bias=True): with tf.variable_scope(name) as scope: if scale > 1: X = self.t_conv(name + '_upsample', X, filter, scale, scale, (not norm) and use_bias, "VALID", stddev) else: X = self.t_conv(name + '_deconf', X, filter, f_size, 1, (not norm) and use_bias, "VALID", stddev) if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse) if dropout > 0.0: X = tf.layers.dropout(X, dropout, training=is_train)
tensorflow.contrib.layers.instance_norm
3,052
import tensorflow as tf def test_generator_grad_norm_progress(self): stable_stage_num_images = 2 transition_stage_num_images = 3 current_image_id_ph = tf.placeholder(tf.int32, []) progress = networks.compute_progress( current_image_id_ph, stable_stage_num_images, transition_stage_num_images, num_blocks=3) z = tf.random_normal([2, 10], dtype=tf.float32) x, _ = networks.generator( z, progress, _num_filters_stub, networks.ResolutionSchedule( start_resolutions=(4, 4), scale_base=2, num_resolutions=3)) fake_loss = tf.reduce_sum(tf.square(x)) grad_norms = [ _get_grad_norm( fake_loss, tf.trainable_variables('.*/progressive_gan_block_1/.*')), _get_grad_norm( fake_loss, tf.trainable_variables('.*/progressive_gan_block_2/.*')), _get_grad_norm( fake_loss, tf.trainable_variables('.*/progressive_gan_block_3/.*')) ] grad_norms_output = None with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) x1_np = sess.run(x, feed_dict={current_image_id_ph: 0.12}) x2_np = sess.run(x, feed_dict={current_image_id_ph: 1.8})
tensorflow.square
3,053
import tensorflow as tf denom = tf.reduce_sum(weights * tf.matmul( tf.reshape(hist_rater_a, [num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) /
tensorflow.reshape
3,054
import tensorflow as tf feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs]) # 9 # New feature_mat's shape: [time_steps*batch_size, n_inputs] # 128 * batch_size, 9 # Linear activation, reshaping inputs to the LSTM's number of hidden: hidden = tf.nn.relu(tf.matmul( feature_mat, config.W['hidden'] ) + config.biases['hidden']) # New feature_mat (hidden) shape: [time_steps*batch_size, n_hidden] [128*batch_size, 32] print("--n_steps--") print(config.n_steps) print("--hidden--") print(hidden) # Split the series because the rnn cell needs time_steps features, each of shape: hidden = tf.split(0, config.n_steps/4, hidden) # (0, 128, [128*batch_size, 32]) # New hidden's shape: a list of length "time_step" containing tensors of shape [batch_size, n_hidden] # Define LSTM cell of first hidden layer: lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(config.n_hidden, forget_bias=1.0) # Stack two LSTM layers, both layers has the same shape lsmt_layers = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * 2) # Get LSTM outputs, the states are internal to the LSTM cells,they are not our attention here outputs, _ = tf.nn.rnn(lsmt_layers, hidden, dtype=tf.float32) # outputs' shape: a list of lenght "time_step" containing tensors of shape [batch_size, n_hidden] print("------------------list-------------------") print(outputs)
tensorflow.split
3,055
import tensorflow as tf # match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, extended_vsize] batch_nums = tf.range(0, limit=batch_size) # shape (batch_size) batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1) batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length) step_nums = tf.range(0, limit=passage_length) # [passage_length] step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length) step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length) indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3) indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3] indices = tf.cast(indices, tf.int64) shape = [batch_size, passage_length, extended_vsize]
tensorflow.tile
3,056
import tensorflow as tf test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum) test_inf=work.test_inference(test_image_batch) test_labels=tf.one_hot(test_label_batch,classnum) test_pre = tf.reshape(test_inf, [testnum, classnum]) correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) test_pre = tf.argmax(test_pre, 1) test_true = tf.argmax(test_labels, 1) valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum) #train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) valid_pre = tf.reshape(valid_inf, [validnum, classnum]) valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1)) valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32)) valid_pre = tf.argmax(valid_pre, 1) valid_true = tf.argmax(valid_labels, 1) target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj', 'class no', 'class yh', 'class fb'] init = tf.initialize_all_variables() config=tf.ConfigProto() config.gpu_options.allow_growth=True #init=tf.initialize_all_variables() def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False): with tf.Session(config=config) as sess:
tensorflow.argmax
3,057
import tensorflow as tf
tensorflow.math.reduce_sum
3,058
import tensorflow as tf bert_config = modeling.BertConfig.from_json_file(bert_config_file.name) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]()
tensorflow.gfile.MakeDirs
3,059
import tensorflow as tf decayed_learning_rate = (max_lr - learning_rate) * (floor(global_step / step_size) - global_step / step_size) + learning_rate """ with tf.name_scope(name): learning_rate = tf.cast(learning_rate, dtype=tf.float32) global_step = tf.cast(global_step, dtype=tf.float32) step_size = tf.cast(step_size, dtype=tf.float32) max_lr = tf.cast(max_lr, dtype=tf.float32)
tensorflow.cast
3,060
import tensorflow as tf return tf.contrib.layers.batch_norm(inputs=x, decay=0.95, center=True, scale=True, is_training=(mode=='train'), updates_collections=None, scope=(name+'batch_norm')) def build_model(self): features = self.features captions = self.captions batch_size = tf.shape(features)[0] captions_in = captions[:, :self.T] captions_out = captions[:, 1:] mask = tf.to_float(tf.not_equal(captions_out, self._null)) # batch normalize feature vectors features = self._batch_norm(features, mode='train', name='conv_features') c, h = self._get_initial_lstm(features=features) x = self._word_embedding(inputs=captions_in) features_proj = self._project_features(features=features) loss = 0.0 alpha_list = [] lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=self.H) for t in range(self.T):
tensorflow.not_equal
3,061
import tensorflow as tf def parse_function(example_proto): features = {'member/name': tf.io.FixedLenFeature([], tf.string), 'member/encoded': tf.io.FixedLenFeature([], tf.string), 'member/age': tf.io.FixedLenFeature([], tf.int64), 'member/height': tf.io.VarLenFeature(tf.float32), 'member/prefer_prods': tf.io.VarLenFeature(tf.int64)} features = tf.io.parse_single_example(example_proto, features) images = tf.image.decode_png(features['member/encoded'], channels=3) # 注意png原本有4個channel,但執行到下面的處理會出錯,所以前一行先降成3個channel。 images = tf.image.random_brightness(images, 0.1) images = tf.image.random_saturation(images, 0.7, 1.3) images = tf.image.random_contrast(images, 0.6, 1.5)
tensorflow.io.VarLenFeature
3,062
import tensorflow as tf return None for var in self.get_variables_in_scope(): # TODO: different summary types tf.summary.scalar(var.name, tf.reduce_mean(var)) self._summary_added = True
tensorflow.reduce_mean
3,063
import tensorflow as tf else: # pragma: no cover raise ValueError("Bad dimension for q_sqrt: %s" % str(q_sqrt.get_shape().ndims)) if full_cov: fvar = fvar + tf.matmul(LTA, LTA, transpose_a=True) # R x N x N else: fvar = fvar + tf.reduce_sum(tf.square(LTA), 1) # R x N
tensorflow.matmul
3,064
import tensorflow as tf tf.summary.scalar('Learning rate', m.lr) latest_ckpt = tf.train.latest_checkpoint(FLAGS.save_path)
tensorflow.train.latest_checkpoint
3,065
import tensorflow as tf grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, dtype)) * stride box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2. box_x2y2 = box_xy + box_wh / 2. box = tf.concat([box_x1y1, box_x2y2], axis=-1) boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4))) objects.append(tf.reshape(obj, (x_shape[0], -1, 1))) classes.append(tf.reshape(cls, (x_shape[0], -1, num_classes))) boxes = tf.concat(boxes, axis=1) objects = tf.concat(objects, axis=1) classes = tf.concat(classes, axis=1) scores = objects * classes boxes, scores, classes, valid = tf.image.combined_non_max_suppression( boxes=boxes, scores=scores, max_output_size_per_class=max_outputs, max_total_size=max_outputs, iou_threshold=iou_threshold, score_threshold=score_threshold, clip_boxes=False )
tensorflow.concat
3,066
import tensorflow as tf # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T] alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape #output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1) output = facts * tf.expand_dims(alphas, -1) output = tf.reshape(output, tf.shape(facts)) # output = output / (facts.get_shape().as_list()[-1] ** 0.5) if not return_alphas: return output else: return output, alphas def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2)
tensorflow.shape
3,067
import tensorflow as tf with tf.device(self.raw_devices[device_num]): if not use_synthetic_gpu_images: gpu_compute_stage = data_flow_ops.StagingArea( [tf.float32, tf.int32], shapes=[images_shape, labels_shape] ) # The CPU-to-GPU copy is triggered here. gpu_compute_stage_op = gpu_compute_stage.put( [host_images, host_labels]) images, labels = gpu_compute_stage.get() images = tf.reshape(images, shape=images_shape) gpu_compute_stage_ops.append(gpu_compute_stage_op) else: # Minor hack to avoid H2D copy when using synthetic data images = tf.truncated_normal( host_images.get_shape(), dtype=input_data_type, stddev=1e-1, name='synthetic_images') images = tf.contrib.framework.local_variable(
tensorflow.reshape
3,068
from tensorflow.python.ops import math_ops with ops.name_scope(name, 'true_positives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id( labels, predictions_idx, class_id) tp = set_ops.set_size(set_ops.set_intersection(predictions_idx, labels)) tp = math_ops.to_double(tp) if weights is not None: weights = math_ops.to_double(weights) tp = math_ops.mul(tp, weights)
tensorflow.python.ops.math_ops.to_double
3,069
from tensorflow.python.ops import math_ops math_ops.abs(sensitivities - sensitivity), min_val) indices_at_minval = math_ops.to_int64(indices_at_minval) indices_at_minval = math_ops.cumsum(indices_at_minval) tf_index = math_ops.argmax(indices_at_minval, 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the specificity: return math_ops.div(tn[tf_index], tn[tf_index] + fp[tf_index] + kepsilon, name) specificity = compute_specificity_at_sensitivity('value') with ops.control_dependencies( [tp_update_op, fn_update_op, tn_update_op, fp_update_op]):
tensorflow.python.ops.math_ops.div
3,070
import tensorflow as tf # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.test_session() as sess: v0_2 = tf.Variable(1000.0, name="v0") v1_2 = tf.Variable(2000.0, name="v1") save2 = tf.train.Saver({"v0": v0_2, "v1": v1_2}) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(1000.0, v0_2.eval()) self.assertEqual(2000.0, v1_2.eval()) # Restore the values saved earlier in the parameter nodes. save2.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0_2.eval()) self.assertEqual(20.0, v1_2.eval()) def testInt64(self): save_path = os.path.join(self.get_temp_dir(), "int64")
tensorflow.initialize_all_variables
3,071
import tensorflow as tf self.loss = tf.squared_difference(self.value_estimate, self.target) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.contrib.framework.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() state=featurize_state(state); return sess.run(self.value_estimate, { self.state: [state] })[0][0] def update(self, state, target, sess=None): sess = sess or tf.get_default_session()
tensorflow.get_default_session
3,072
import tensorflow as tf # Start by setting a seed for repeatability tf.set_random_seed(hparams.tacotron_random_seed)
tensorflow.set_random_seed
3,073
import tensorflow as tf else: return tf.nn.batch_normalization(inp, moving_mean, moving_variance, offset, scale, 0.01, name='norm')
tensorflow.nn.batch_normalization
3,074
import tensorflow as tf def _double_factorial_loop_body(n, result, two): result = tf.where(tf.greater_equal(n, two), result * n, result) return n - two, result, two
tensorflow.greater_equal
3,075
import tensorflow as tf """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
tensorflow.FixedLenFeature
3,076
import tensorflow as tf initializer=tf.constant_initializer(0), trainable=False) label = tf.reshape(label, [-1]) centers_batch = tf.gather(centers, label) diff = (1 - alpha) * (centers_batch - features) centers = tf.scatter_sub(centers, label, diff)
tensorflow.gather
3,077
import tensorflow as tf def summarize_features(features, num_shards=1): with tf.name_scope("input_stats"): for (k, v) in six.iteritems(features): if isinstance(v, tf.Tensor) and v.get_shape().ndims > 1: tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards) tf.summary.scalar("%s_length" % k, tf.shape(v)[1]) nonpadding = tf.to_float(tf.not_equal(v, 0)) nonpadding_tokens = tf.reduce_sum(nonpadding) tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens) tf.summary.scalar("%s_nonpadding_fraction" % k, tf.reduce_mean(nonpadding)) _already_logged = set()
tensorflow.reduce_sum
3,078
import tensorflow as tf # Decrease keep prob deeper into network keep_prob = 1 - layers_ratio * (1 - drop_path_keep_prob) # Decrease keep prob with increasing steps steps_per_epoch = math.ceil(N / batch_size) steps_ratio = tf.minimum(((step + 1) / steps_per_epoch) / drop_path_decay_epochs, 1) keep_prob = 1 - steps_ratio * (1 - keep_prob) keep_prob = tf.cast(keep_prob, tf.float32) # Monitor last layer's keep prob
tensorflow.minimum
3,079
import tensorflow as tf def instance_norm(x,name='instance_norm'): with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False epsilon = 1e-5 mean, var = tf.nn.moments(x, [1, 2], keep_dims=True) scale = tf.get_variable('scale',[x.get_shape()[-1]], initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02)) offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0)) out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset return out def common_conv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',norm=True,name='common_conv2d'): """Layers used during downsampling"""
tensorflow.nn.moments
3,080
import tensorflow as tf # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
tensorflow.logging.info
3,081
import tensorflow as tf image_width - (left_pad + right_pad)] padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] mask = tf.pad( tf.zeros(cutout_shape, dtype=images.dtype), padding_dims, constant_values=1) patch = tf.ones_like(images, dtype=images.dtype) * replace, mask = tf.expand_dims(mask, -1) mask = tf.tile(mask, [1, 1, num_channels]) images = tf.where( tf.equal(mask, 0), patch, images) images = tf.squeeze(images, axis=0) return {'image': images, 'label': labels}
tensorflow.equal
3,082
import tensorflow as tf F = -lambda_1*U*U_x + lambda_2*U_xx U0 = U - self.dt*tf.matmul(F, self.IRK_alpha.T)
tensorflow.matmul
3,083
from tensorflow.python.ops import variable_scope value: A tensor representing the concatenated values. update_op: An operation that concatenates the next values. Raises: ValueError: if `values` does not have a statically known rank, `axis` is not in the valid range or the size of `values` is not statically known along any axis other than `axis`. """ with variable_scope.variable_scope(name, 'streaming_concat', [values]): # pylint: disable=invalid-slice-index values_shape = values.get_shape() if values_shape.dims is None: raise ValueError('`values` must have known statically known rank') ndim = len(values_shape) if axis < 0:
tensorflow.python.ops.variable_scope.variable_scope
3,084
import tensorflow as tf lm_embeddings["lstm_outputs1"], lm_embeddings["lstm_outputs2"]], -1) # [num_sentences, max_sentence_length, 1024, 3] lm_emb_size = util.shape(lm_emb, 2) lm_num_layers = util.shape(lm_emb, 3) with tf.variable_scope("lm_aggregation"): self.lm_weights = tf.nn.softmax(tf.get_variable("lm_scores", [lm_num_layers], initializer=tf.constant_initializer(0.0))) self.lm_scaling = tf.get_variable("lm_scaling", [], initializer=tf.constant_initializer(1.0)) flattened_lm_emb = tf.reshape(lm_emb, [num_sentences * max_sentence_length * lm_emb_size, lm_num_layers]) flattened_aggregated_lm_emb = tf.matmul(flattened_lm_emb, tf.expand_dims(self.lm_weights, 1)) # [num_sentences * max_sentence_length * emb, 1] aggregated_lm_emb = tf.reshape(flattened_aggregated_lm_emb, [num_sentences, max_sentence_length, lm_emb_size]) aggregated_lm_emb *= self.lm_scaling context_emb_list.append(aggregated_lm_emb)
tensorflow.constant_initializer
3,085
import tensorflow as tf h2 = Dense(units=RNN_SIZE)(h1) self.h3 = tf.nn.relu(h2+concat)
tensorflow.nn.relu
3,086
import tensorflow as tf import tensorflow as tf from garage.experiment import deterministic from tests.fixtures.logger import NullOutput class TfTestCase: def setup_method(self): self.sess = tf.compat.v1.Session() self.sess.__enter__() def teardown_method(self): self.sess.__exit__(None, None, None) self.sess.close() del self.sess gc.collect()
tensorflow.compat.v1.Session
3,087
import tensorflow as tf concat = tf.concat([inp, targets], axis=0) mask = tf.concat([tf.zeros_like(inp), tf.ones_like(targets)], axis=0)
tensorflow.zeros_like
3,088
from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils def _assertSingleClassMetrics(self, metrics): estimator_test_utils.assert_in_range(0.9, 1.0, 'auc', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy/threshold_0.500000_mean', metrics) estimator_test_utils.assert_in_range( 0.9, 1.0, 'precision/positive_threshold_0.500000_mean', metrics) estimator_test_utils.assert_in_range( 0.9, 1.0, 'recall/positive_threshold_0.500000_mean', metrics) self._assertCommonMetrics(metrics) def _assertCommonMetrics(self, metrics): estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics) estimator_test_utils.assert_in_range(0.0, 0.2, 'loss', metrics) self.report_benchmark( iters=metrics['global_step'], extras={k: v for k, v in metrics.items() if k in _METRIC_KEYS}) def benchmarkMatrixData(self): iris = test_data.prepare_iris_data_for_logistic_regression() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=tempfile.mkdtemp(), linear_feature_columns=(bucketized_feature,),
tensorflow.contrib.learn.python.learn.estimators.estimator_test_utils.assert_in_range
3,089
import tensorflow as tf # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(classifier_utils.PaddingInputExample()) cached_dir = FLAGS.cached_dir if not cached_dir: cached_dir = FLAGS.output_dir eval_file = os.path.join(cached_dir, task_name + "_eval.tf_record") if not tf.gfile.Exists(eval_file): classifier_utils.file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file, task_name) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)
tensorflow.logging.info
3,090
import tensorflow as tf bench.print_info() bench.run() if __name__ == '__main__': tf.app.run()
tensorflow.app.run
3,091
import tensorflow as tf self.c = tf.placeholder(tf.int32, [None, config.test_para_limit],"context") self.q = tf.placeholder(tf.int32, [None, config.test_ques_limit],"question") self.ch = tf.placeholder(tf.int32, [None, config.test_para_limit, config.char_limit],"context_char") self.qh = tf.placeholder(tf.int32, [None, config.test_ques_limit, config.char_limit],"question_char")
tensorflow.placeholder
3,092
import tensorflow as tf return tf_input_dtype = np_to_tf_dtype(input_dtype) tf_output0_dtype = np_to_tf_dtype(output0_dtype) tf_output1_dtype = np_to_tf_dtype(output1_dtype) # Create the model. If non-batching then don't include the batch # dimension. tf.reset_default_graph() if max_batch == 0: in0 = tf.placeholder(tf_input_dtype, tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT0") in1 = tf.placeholder(tf_input_dtype, tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT1") else: in0 = tf.placeholder(tf_input_dtype, [
tensorflow.reset_default_graph
3,093
import tensorflow as tf s1 = softmax_mask(tf.squeeze(s, [2]), mask)#[N,PL] a = tf.expand_dims(tf.nn.softmax(s1), axis=2)#[N,PL,1]
tensorflow.nn.softmax
3,094
import tensorflow as tf layer1 = tf.nn.sigmoid(layer0) layer2 = tf.matmul(layer1, w1) + b1 predictions = layer2 loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=predictions, labels=y)) grads = tf.gradients(ys=loss, xs=params) return predictions, loss, grads def build_training_model(self, x, y): """
tensorflow.gradients
3,095
import tensorflow as tf with tf.variable_scope('l1'): n_l1 = 700 # combine the action and states together in this way w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable) w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable) b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable) net = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1) with tf.variable_scope('l2'): net = tf.layers.dense(net, 20, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable) with tf.variable_scope('q'): q = tf.layers.dense(net, 1, kernel_initializer=init_w, bias_initializer=init_b, trainable=trainable) # Q(s,a) return q def learn(self, s, a, r, s_, ISW):
tensorflow.variable_scope
3,096
import tensorflow as tf # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config) if FLAGS.do_train: tf.logging.info("***** Running training *****") tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) train_input_fn = input_fn_builder( input_files=input_files, max_seq_length=FLAGS.max_seq_length, max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=True,
tensorflow.logging.info
3,097
import tensorflow as tf n_token=xlnet_config.n_token, d_model=xlnet_config.d_model, initializer=initializer, lookup_table=lookup_table, tie_weight=True, bi_data=run_config.bi_data, use_tpu=run_config.use_tpu) #### Quantity to monitor monitor_dict = {} if FLAGS.use_bfloat16: tgt_mask = tf.cast(tgt_mask, tf.float32) lm_loss = tf.cast(lm_loss, tf.float32) total_loss = tf.reduce_sum(lm_loss * tgt_mask) / tf.reduce_sum(tgt_mask) monitor_dict["total_loss"] = total_loss return total_loss, new_mems, monitor_dict def get_loss(FLAGS, features, labels, mems, is_training): """Pretraining loss with two-stream attention Transformer-XL.""" if FLAGS.use_bfloat16: with tf.tpu.bfloat16_scope(): return two_stream_loss(FLAGS, features, labels, mems, is_training) else: return two_stream_loss(FLAGS, features, labels, mems, is_training)
tensorflow.reduce_sum
3,098
import tensorflow as tf inc.eval() save.save(sess, filepath, global_step=1) inc.eval() save.save(sess, filepath, global_step=2) with self.test_session() as sess: # Build a new graph with different initialization. v0 = tf.Variable(-1.0) # Create a new saver. save = tf.train.Saver({"v0": v0}) tf.initialize_all_variables().run() # Get the most recent checkpoint name from the training history file. name = tf.train.latest_checkpoint(traindir) self.assertIsNotNone(name) # Restore "v0" from that checkpoint. save.restore(sess, name) self.assertEqual(v0.eval(), 2.0)
tensorflow.train.Saver
3,099