seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse, epsilon=0.001) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=True) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
tensorflow.layers.batch_normalization
14,200
import tensorflow as tf ops.update(rnn_params=self._rnn_params) for name, op in ops.items(): tf.add_to_collection(name, op) self._initial_state_name = self.with_prefix(self._name, 'initial') self._final_state_name = self.with_prefix(self._name, 'final') for state_tuple in self._initial_state: tf.add_to_collection(self._initial_state_name, state_tuple.c) tf.add_to_collection(self._initial_state_name, state_tuple.h) for state_tuple in self._final_state: tf.add_to_collection(self._final_state_name, state_tuple.c) tf.add_to_collection(self._final_state_name, state_tuple.h) def import_state_tuples(self, state_tuples, name, num_replicas): restored = [] for i in range(len(state_tuples) * num_replicas): c = tf.get_collection_ref(name)[2 * i + 0] h = tf.get_collection_ref(name)[2 * i + 1] restored.append(tf.contrib.rnn.LSTMStateTuple(c, h)) return tuple(restored)
tensorflow.add_to_collection
14,201
import tensorflow as tf masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, "next_sentence_accuracy": next_sentence_accuracy, "next_sentence_loss": next_sentence_mean_loss, } eval_metrics = metric_fn(
tensorflow.reshape
14,202
import tensorflow as tf predict_image_weight = predict_image_train_weight if training else 0.0 mask_begin = tf.ones_like(flat) mask_begin = tf.cast(mask_begin, tf.float32) * predict_image_weight mask_end = tf.cast(tf.ones_like(tgt), tf.float32) new_features['mask'] = tf.concat([mask_begin, mask_end], axis=0) return new_features, flat_with_target if training:
tensorflow.concat
14,203
import tensorflow as tf offset = get_variable("offset", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) scale = get_variable("scale", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(1.0), regularizer=tf.nn.l2_loss) mean, variance = tf.nn.moments(inp, axes=[0, 1, 2], shift=moving_mean) mean_op = moving_mean.assign(decay * moving_mean + (1 - decay) * mean)
tensorflow.nn.moments
14,204
from tensorflow.python.ops import math_ops if self._n_classes < 2: loss_vec = math_ops.square(logits - math_ops.to_float(target)) elif self._n_classes == 2: loss_vec = nn.sigmoid_cross_entropy_with_logits(logits, math_ops.to_float(target)) else: loss_vec = nn.sparse_softmax_cross_entropy_with_logits( logits, array_ops.reshape(target, [-1]))
tensorflow.python.ops.math_ops.to_float
14,205
import tensorflow as tf channels = 3 rows = height if likelihood == common_image_attention.DistributionType.CAT: cols = channels * width else: cols = width hparams = tf.contrib.training.HParams( hidden_size=2, likelihood=likelihood, mode=tf.estimator.ModeKeys.TRAIN, num_mixtures=num_mixtures, ) decoder_output = tf.random_normal([batch, rows, cols, hparams.hidden_size]) targets = tf.random_uniform([batch, height, width, channels], minval=-1., maxval=1.) output = common_image_attention.create_output( decoder_output, rows, cols, targets, hparams) if hparams.likelihood == common_image_attention.DistributionType.CAT: self.assertEqual(output.shape, (batch, height, width, channels, depth)) else: self.assertEqual(output.shape, (batch, height, width, depth)) if __name__ == "__main__": tf.test.main()
tensorflow.random_uniform
14,206
import tensorflow as tf with tf.variable_scope('fully_connected'): bottom = out bottom_shape = bottom.get_shape().as_list() reshape = tf.reshape( bottom, [-1, bottom_shape[1] * bottom_shape[2] * bottom_shape[3] * bottom_shape[4]])
tensorflow.reshape
14,207
import tensorflow as tf offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0)) out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
tensorflow.sqrt
14,208
import tensorflow as tf l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def test_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def valid_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1
tensorflow.nn.relu
14,209
import tensorflow as tf b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0)) self.fc3 = tf.matmul(self.fc2, w) + b
tensorflow.matmul
14,210
import tensorflow as tf tf.app.flags.DEFINE_float('epsilon', 0.000001, 'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5') tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances') tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance') tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective') tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model') tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set') tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs') tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs') tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every') tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization') tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ') tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information') tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode') tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size') tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ') tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set') tf.app.flags.DEFINE_boolean('new_blur', False, 'Use data augmentation as blur info')
tensorflow.app.flags.DEFINE_integer
14,211
import tensorflow as tf batch_size = tf.shape(policy.obs_ph)[0] n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) _act = tf_util.function(inputs=[policy.obs_ph, stochastic_ph, update_eps_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True}, updates=[update_eps_expr]) def act(obs, stochastic=True, update_eps=-1): return _act(obs, stochastic, update_eps)
tensorflow.cond
14,212
import tensorflow as tf wvs_weighted_reshaped = tf.reshape(wvs_weighted, wvs.get_shape()) wvsum = tf.reduce_sum(wvs_weighted_reshaped,0) pred_mat = tf.get_variable('pred_mat', [in_size, self._out_vocab_size]) pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size]) # Make a prediction for each tweet. def GetWordPred(o_):
tensorflow.get_variable
14,213
import tensorflow as tf # 4. Return EstimatorSpec return tf.estimator.EstimatorSpec( mode = mode,
tensorflow.estimator.EstimatorSpec
14,214
import tensorflow as tf sampler_cls=sampler_cls, sampler_args=sampler_args) def initialize_tf_vars(self): """Initialize all uninitialized variables in session.""" with tf.name_scope('initialize_tf_vars'): uninited_set = [ e.decode() for e in self.sess.run(tf.report_uninitialized_variables()) ] self.sess.run( tf.variables_initializer([ v for v in tf.global_variables() if v.name.split(':')[0] in uninited_set ])) def _start_worker(self): """Start Plotter and Sampler workers.""" self.sampler.start_worker() if self.plot: from garage.tf.plotter import Plotter self.plotter = Plotter(self.env, self.policy) self.plotter.start()
tensorflow.global_variables
14,215
import tensorflow as tf # Compute epsilon from {n_samples} standard Gaussian # epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out]) epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out]) hyp_params = tf.get_variable('hyp_params_layer'+str(h), shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer else: F = tf.squeeze(tf.layers.dense(Z, n_out), [2]) return F, KL
tensorflow.matmul
14,216
from tensorflow.python.framework import ops with ops.name_scope( name, 'expand_and_tile', (tensor, multiple, dim)) as scope: # Sparse. if isinstance(tensor, ops.SparseTensorValue): tensor = ops.SparseTensor.from_value(tensor) if isinstance(tensor, ops.SparseTensor): if dim < 0: expand_dims = array_ops.reshape(
tensorflow.python.framework.ops.SparseTensor.from_value
14,217
import tensorflow as tf parser.add_argument('--batch_size', type=int, default=32, help='batch size') parser.add_argument('--max_train_step', type=int, default=50000, help='the maximum training step') parser.add_argument('--model_path', type=str, default='', help='the path of checkpoint file') args = parser.parse_args() def model(): x = tf.placeholder(tf.float32, [None, 784], name='x') gt = tf.placeholder(tf.float32, [None, 10], name='groundtruth') with tf.variable_scope('layer1'): w1 = tf.get_variable('weight1', [784, 1024], initializer=tf.random_normal_initializer()) b1 = tf.get_variable('bias1', [1024], initializer=tf.constant_initializer(0.0)) h1 = tf.nn.relu(tf.matmul(x, w1) + b1) with tf.variable_scope('layer2'): w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer()) b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0)) h2 = tf.nn.relu(tf.matmul(h1, w2) + b2) with tf.variable_scope('layer3'): w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer()) b3 = tf.get_variable('bias3', [10], initializer=tf.constant_initializer(0.0)) y = tf.matmul(h2, w3) + b3
tensorflow.constant_initializer
14,218
import tensorflow as tf pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32) p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4, lambda: tf.print('csrt acc ', [pct]), lambda: tf.no_op()) with tf.control_dependencies([p]): return tf.reduce_mean(loss)
tensorflow.no_op
14,219
import tensorflow as tf with tf.control_dependencies([update_op]): clear_ops = [tf.assign(s, tf.zeros_like(s)) for s in slots] return tf.group(*clear_ops, name='update_grad') pred = tf.equal(tf.mod(counter, self._niter), 0) with tf.control_dependencies([update_slot_op]): if name is None: name = 'cond_update_grad' op = tf.cond(pred, update_grad, tf.no_op, name=name).op return op
tensorflow.control_dependencies
14,220
import tensorflow as tf if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn)
tensorflow.contrib.tpu.TPUEstimatorSpec
14,221
import tensorflow as tf def tf_store(self, states, internals, actions, terminal, reward): # Memory indices to overwrite. num_instances = tf.shape(input=terminal)[0] with tf.control_dependencies([tf.assert_less_equal(num_instances, self.capacity)]): indices = tf.range(self.memory_index, self.memory_index + num_instances) % self.capacity # Remove episode indices. num_episodes = tf.count_nonzero( input_tensor=tf.gather(params=self.terminal_memory, indices=indices), axis=0, dtype=util.tf_dtype('int') ) num_episodes = tf.minimum(x=num_episodes, y=self.episode_count) assignment = tf.assign( ref=self.episode_indices[:self.episode_count - num_episodes], value=self.episode_indices[num_episodes: self.episode_count] ) # Decrement episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_sub(ref=self.episode_count, value=num_episodes) # Assign new observations. with tf.control_dependencies(control_inputs=(assignment,)): assignments = list() for name in sorted(states):
tensorflow.assign
14,222
import tensorflow as tf test(model, eval_data) print("Colorbot is ready to generate colors!") while True: try: color_name = six.moves.input( "Give me a color name (or press enter to exit): ") except EOFError: return if not color_name: return _, chars, length = parse(color_name) with tf.device(device): (chars, length) = (tf.identity(chars), tf.identity(length)) chars = tf.expand_dims(chars, 0) length = tf.expand_dims(length, 0) preds = tf.unstack(model((chars, length), training=False)[0]) # Predictions cannot be negative, as they are generated by a ReLU layer; # they may, however, be greater than 1. clipped_preds = tuple(min(float(p), 1.0) for p in preds) rgb = tuple(int(p * 255) for p in clipped_preds) print("rgb:", rgb) data = [[clipped_preds]] if HAS_MATPLOTLIB: plt.imshow(data) plt.title(color_name) plt.show()
tensorflow.identity
14,223
import tensorflow as tf shape=shape, dtype=dtype, initializer=initializer, collections=collections, trainable=trainable) finally: tf.get_variable_scope().set_partitioner(partitioner) # Using the absolute value enforces nonnegativity. dual_value = tf.abs(dual_variable) if trainable: # To reverse the gradient on the dual variable, multiply the gradient by # -dual_rate_factor dual_value = (tf.stop_gradient( (1.0 + dual_rate_factor) * dual_value) - dual_rate_factor * dual_value) return dual_value, dual_variable def maybe_create_label_priors(label_priors, labels, weights, variables_collections): """Creates moving average ops to track label priors, if necessary. Args: label_priors: As required in e.g. precision_recall_auc_loss. labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels]. weights: As required in e.g. precision_recall_auc_loss. variables_collections: Optional list of collections for the variables, if any must be created.
tensorflow.stop_gradient
14,224
from tensorflow.contrib.metrics.python.ops import metric_ops return logits def get_eval_ops(self, features, logits, labels, metrics=None): loss = self.loss(logits, labels, features) result = {"loss": metric_ops.streaming_mean(loss)} if metrics: predictions = self.logits_to_predictions(logits, proba=False) result.update(
tensorflow.contrib.metrics.python.ops.metric_ops.streaming_mean
14,225
import tensorflow as tf y_as_list = tf.unstack(y, num=num_steps, axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits) total_loss = tf.reduce_mean(losses) train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss) '''训练网络''' def train_rnn(num_epochs, num_steps, state_size=4, verbose=True): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) #sess = tf_debug.LocalCLIDebugWrapperSession(sess) training_losses = [] for idx, epoch in enumerate(gen_epochs(num_epochs, num_steps)): training_loss = 0 training_state = np.zeros((batch_size, state_size)) # ->(200, 4) if verbose:
tensorflow.Session
14,226
import tensorflow as tf def _meshgrid(depth, height, width, z_near, z_far): with tf.variable_scope('_meshgrid'): x_t = tf.reshape( tf.tile(tf.linspace(-1.0, 1.0, width), [height * depth]), [depth, height, width]) y_t = tf.reshape( tf.tile(tf.linspace(-1.0, 1.0, height), [width * depth]), [depth, width, height]) y_t = tf.transpose(y_t, [0, 2, 1]) sample_grid = tf.tile( tf.linspace(float(z_near), float(z_far), depth), [width * height]) z_t = tf.reshape(sample_grid, [height, width, depth]) z_t = tf.transpose(z_t, [2, 0, 1]) z_t = 1 / z_t d_t = 1 / z_t x_t /= z_t
tensorflow.transpose
14,227
import tensorflow as tf Returns: tuple (final output, loss) ''' y = output if add_bias: bias = tf.Variable([0.0]) y = output + bias sig_y = tf.clip_by_value(tf.sigmoid(y), 0.001, 0.999) # avoid NaNs loss = -tf.reduce_sum(target*tf.log(sig_y) + (1-target)*tf.log(1-sig_y)) return sig_y, loss def ranking_margin_objective(output, margin=1.0): ''' Create final model output and loss for pairwise ranking margin objective
tensorflow.sigmoid
14,228
import tensorflow as tf output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings, do_serve): """Returns `model_fn` closure for TPUEstimator."""
tensorflow.nn.log_softmax
14,229
import tensorflow as tf num_decoder_symbols=classes, embedding_size=24) targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0] return tf.nn.seq2seq.model_with_buckets( enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq, per_example_loss=per_example_loss) # Now we construct the copy model. inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)] with tf.variable_scope("root"): _, losses1 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=False) # Now check that we did not accidentally set reuse. self.assertEqual(False, tf.get_variable_scope().reuse) # Construct one more model with per-example loss. tf.get_variable_scope().reuse_variables() _, losses2 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=True) # First loss is scalar, the second one is a 1-dimensinal tensor. self.assertEqual([], losses1[0].get_shape().as_list()) self.assertEqual([None], losses2[0].get_shape().as_list()) def testModelWithBuckets(self): """Larger tests that does full sequence-to-sequence model training.""" # We learn to copy 10 symbols in 2 buckets: length 4 and length 8. classes = 10 buckets = [(4, 4), (8, 8)] perplexities = [[], []] # Results for each bucket. tf.set_random_seed(111) random.seed(111) np.random.seed(111)
tensorflow.get_variable_scope
14,230
import tensorflow as tf partitioner = tf.get_variable_scope().partitioner try: tf.get_variable_scope().set_partitioner(None) dual_variable = tf.contrib.framework.model_variable( name=name, shape=shape, dtype=dtype, initializer=initializer, collections=collections, trainable=trainable) finally: tf.get_variable_scope().set_partitioner(partitioner) # Using the absolute value enforces nonnegativity. dual_value = tf.abs(dual_variable) if trainable: # To reverse the gradient on the dual variable, multiply the gradient by # -dual_rate_factor dual_value = (tf.stop_gradient( (1.0 + dual_rate_factor) * dual_value) - dual_rate_factor * dual_value) return dual_value, dual_variable
tensorflow.get_variable_scope
14,231
import tensorflow as tf table_values = np.arange(len(vocab), dtype=np.int64) table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer(vocab, table_values), num_oov_buckets=1) def to_ids(example): sentence = tf.reshape(example['tokens'], shape=[1]) words = tf.strings.split(sentence, sep=' ').values truncated_words = words[:max_seq_len] tokens = table.lookup(truncated_words) + 1 tokens = tf.cond( tf.less(tf.size(tokens), max_seq_len), lambda: tf.concat([tokens, [eos]], 0), lambda: tokens)
tensorflow.reshape
14,232
import tensorflow as tf all_vars += tf.get_collection('mu_sigma_bn') for v in all_vars: if v.op.name in self.pretrained_weights.keys(): assign_op = v.assign(self.pretrained_weights[v.op.name]) sess.run(assign_op) print(v.op.name + " - loaded successfully") print("All pretrained weights of resnet18 is loaded") def _residual_block(self, name, x, filters, pool_first=False, strides=1, dilation=1): print('Building residual unit: %s' % name) with tf.variable_scope(name): # get input channels in_channel = x.shape.as_list()[-1] # Shortcut connection shortcut = tf.identity(x) if pool_first: if in_channel == filters: if strides == 1:
tensorflow.variable_scope
14,233
import tensorflow as tf negative: 2-D `tensor` [batch_size, embedding_size], the embeddings for the negative images. alpha: positive to negative triplet distance margin Returns: the triplet loss. """ with tf.name_scope(name): pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1) neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1) basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), alpha) loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) return loss def decov_loss(xs, name='decov_loss'): """Decov loss as described in https://arxiv.org/pdf/1511.06068.pdf 'Reducing
tensorflow.subtract
14,234
import tensorflow as tf eval_metric_ops=eval_metric_ops ) assert mode == tf.estimator.ModeKeys.TRAIN with tf.variable_scope('learning_rate'): global_step = tf.train.get_global_step() learning_rate = tf.train.cosine_decay( params['initial_learning_rate'], global_step, decay_steps=params['num_steps'] ) tf.summary.scalar('learning_rate', learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops), tf.variable_scope('optimizer'): optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(total_loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step) for g, v in grads_and_vars: tf.summary.histogram(v.name[:-2] + '_hist', v) tf.summary.histogram(v.name[:-2] + '_grad_hist', g) with tf.control_dependencies([train_op]), tf.name_scope('ema'): ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY, num_updates=global_step) train_op = ema.apply(tf.trainable_variables())
tensorflow.variable_scope
14,235
from tensorflow.python.framework import ops array_ops.ones_like(count), name=name) return math_ops.truediv(total, non_zero_count, name=name) mean = compute_mean(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = compute_mean(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean)
tensorflow.python.framework.ops.control_dependencies
14,236
import tensorflow as tf if q_sqrt is not None: if q_sqrt.get_shape().ndims == 2: LTA = A * tf.expand_dims(tf.transpose(q_sqrt), 2) # R x M x N elif q_sqrt.get_shape().ndims == 3: L = tf.matrix_band_part(q_sqrt, -1, 0) # R x M x M A_tiled = tf.tile(tf.expand_dims(A, 0), tf.stack([num_func, 1, 1])) LTA = tf.matmul(L, A_tiled, transpose_a=True) # R x M x N else: # pragma: no cover raise ValueError("Bad dimension for q_sqrt: %s" %
tensorflow.matrix_band_part
14,237
import tensorflow as tf @under_name_scope() def area(boxes): """ Args: boxes: nx4 floatbox Returns: n """ x_min, y_min, x_max, y_max = tf.split(boxes, 4, axis=1) return tf.squeeze((y_max - y_min) * (x_max - x_min), [1]) @under_name_scope() def pairwise_intersection(boxlist1, boxlist2): """Compute pairwise intersection areas between boxes. Args: boxlist1: Nx4 floatbox boxlist2: Mx4
tensorflow.split
14,238
import tensorflow as tf KK = tf.matmul(K, K, transpose_b=True) K_trace = tf.expand_dims(tf.expand_dims(tf.trace(KK), -1), -1) K_loss = tf.reduce_mean(tf.abs(KK / K_trace - tf.eye(2)))
tensorflow.eye
14,239
import tensorflow as tf boxes = tf.gather(gt_boxes, best_target_per_prior_index) return boxes, labels class MatchPrior(object): def __init__(self, center_form_priors, center_variance, size_variance, iou_threshold): self.center_form_priors = center_form_priors self.corner_form_priors = center_form_to_corner_form(center_form_priors) self.center_variance = center_variance self.size_variance = size_variance self.iou_threshold = iou_threshold def __call__(self, gt_boxes, gt_labels): if type(gt_boxes) is np.ndarray: gt_boxes = tf.convert_to_tensor(gt_boxes) if type(gt_labels) is np.ndarray: gt_labels = tf.convert_to_tensor(gt_labels) boxes, labels = assign_priors(gt_boxes, gt_labels, self.corner_form_priors, self.iou_threshold) boxes = corner_form_to_center_form(boxes) locations = convert_boxes_to_locations(boxes, self.center_form_priors, self.center_variance, self.size_variance) return locations, labels
tensorflow.convert_to_tensor
14,240
from tensorflow.python.framework import ops returned_shape = [] for i, dim in enumerate(input_shape.dims): if i != dimension: returned_shape.append(dim) return [tensor_shape.TensorShape(returned_shape)] else: raise ValueError( "dimension (%d) must be in the range [0, %d), where %d is the number " "of dimensions in the input" % (dimension, input_shape.ndims, input_shape.ndims)) @ops.RegisterShape("All") @ops.RegisterShape("Any") @ops.RegisterShape("Max") @ops.RegisterShape("Mean") @ops.RegisterShape("Min") @ops.RegisterShape("Prod") @ops.RegisterShape("Sum") def _ReductionShape(op): """Common shape function for reduction ops.""" input_shape = op.inputs[0].get_shape() reduction_indices = tensor_util.ConstantValue(op.inputs[1]) keep_dims = op.get_attr("keep_dims")
tensorflow.python.framework.ops.RegisterShape
14,241
import tensorflow as tf beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) if var.dtype.base_dtype == tf.float16: eps = 1e-7 # Can't use 1e-8 due to underflow -- not sure if it makes a big difference. else: eps = 1e-8 v = self.get_slot(var, "v") v_t = v.assign(beta2_t * v + (1. - beta2_t) * tf.square(grad)) m = self.get_slot(var, "m") m_t = m.assign(beta1_t * m + (1. - beta1_t) * grad) v_t_hat = tf.div(v_t, 1. - beta2_t) m_t_hat = tf.div(m_t, 1. - beta1_t) g_t = tf.div(m_t_hat, tf.sqrt(v_t_hat) + eps) g_t_1 = self.get_slot(var, "g")
tensorflow.square
14,242
import tensorflow as tf time_steps = input_shape[1] scope_name = 'decoder_{}'.format(decoder.name) scope_name += '/' + '_'.join(encoder.name for encoder in encoders) def embed(input_): embedded_input = tf.nn.embedding_lookup(embedding, input_) if decoder.use_dropout and decoder.word_keep_prob is not None: noise_shape = [1, 1] if decoder.pervasive_dropout else [tf.shape(input_)[0], 1] embedded_input = tf.nn.dropout(embedded_input, keep_prob=decoder.word_keep_prob, noise_shape=noise_shape) if decoder.use_dropout and decoder.embedding_keep_prob is not None:
tensorflow.nn.embedding_lookup
14,243
import tensorflow as tf target_modality = self._problem_hparams.target_modality with tf.variable_scope(target_modality.name):
tensorflow.variable_scope
14,244
import tensorflow as tf pq.put(np.atleast_2d(point.numpy())) while points_observed < num_observations: # keep asking queue for new observations until one arrives try: new_data = oq.get_nowait() print(f"Process {pid}: Main : received data {new_data}", flush=True) except: continue # new_data is a tuple of (point, observation value) # here we turn it into a Dataset and tell of it Trieste points_observed += 1 new_data = Dataset( query_points=tf.constant(new_data[0], dtype=tf.float64), observations=tf.constant(new_data[1], dtype=tf.float64), ) async_bo.tell(new_data) # now we can ask Trieste for one more point # and feed that back into the points queue point = async_bo.ask() print(f"Process {pid}: Main : acquired point {point}", flush=True) pq.put(np.atleast_2d(point)) finally: terminate_processes(observer_processes) stop = timeit.default_timer() # Collect the observations, compute the running time async_lp_observations = async_bo.to_result().try_get_final_dataset().observations - SCALED_BRANIN_MINIMUM
tensorflow.constant
14,245
import tensorflow as tf tf.summary.scalar('Loss/Total', loss) tf.summary.scalar('Var/Epsilon', epsilon_decay) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg) # sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params def build_cnet(self, state_in, name, reuse=False):
tensorflow.layers.dense
14,246
import tensorflow as tf return image def validation_mapper(byte): image = tf.image.decode_jpeg( tf.reshape(byte, shape=[]), 3, **JPEG_OPT) image = resize_shortest_edge(image, tf.shape(image), 256) image = center_crop(image, 224) image = tf.reverse(image, axis=[2]) # to BGR return image def training_mapper(byte): jpeg_shape = tf.image.extract_jpeg_shape(byte) # hwc bbox_begin, bbox_size, distort_bbox = tf.image.sample_distorted_bounding_box( jpeg_shape, bounding_boxes=tf.zeros(shape=[0, 0, 4]), min_object_covered=0, aspect_ratio_range=[0.75, 1.33], area_range=[0.08, 1.0], max_attempts=10, use_image_if_no_bounding_boxes=True) is_bad = tf.reduce_sum(tf.cast(tf.equal(bbox_size, jpeg_shape), tf.int32)) >= 2 def good(): offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
tensorflow.zeros
14,247
import tensorflow as tf optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate, momentum=params['momentum']) # Batch norm requires update_ops to be added as a train_op dependency. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss, global_step) else: train_op = None return tf.estimator.EstimatorSpec(
tensorflow.control_dependencies
14,248
import tensorflow as tf fname = os.path.join(tf.resource_loader.get_data_files_path(), 'samples/configs/' + model_name + '.config') label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), 'data/pet_label_map.pbtxt')
tensorflow.resource_loader.get_data_files_path
14,249
import tensorflow as tf + self.b_out return new_output def rnn_step_scan(self, state, rnn_in): if self.dale_ratio: new_state = (1-self.alpha) * state \ + self.alpha * ( tf.matmul( tf.nn.relu(state), tf.matmul( tf.abs(self.W_rec) * self.rec_Connectivity, self.Dale_rec, name="in_1"), transpose_b=True, name="1") + tf.matmul( rnn_in, tf.abs(self.W_in) * self.input_Connectivity, transpose_b=True, name="2") + self.b_rec) \ + np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\ * tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0) else: new_state = ((1 - self.alpha) * state) \
tensorflow.abs
14,250
import tensorflow as tf x = tf.reshape(x, x_shape[:-2] + [-1]) dropout = getattr(self.hparams, "dropout_ppo", 0.0) with tf.variable_scope("feed_forward_cnn_small"): x = tf.cast(x, tf.float32) / 255.0
tensorflow.variable_scope
14,251
import tensorflow as tf :param name: :param inputdata: :param keep_prob: :param noise_shape: :return: """ return tf.nn.dropout(inputdata, keep_prob=keep_prob, noise_shape=noise_shape, name=name) @staticmethod def fullyconnect(inputdata, out_dim, w_init=None, b_init=None, use_bias=True, name=None): """
tensorflow.nn.dropout
14,252
import tensorflow as tf def tensorflow_session(gpu_memory_fraction): config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction
tensorflow.ConfigProto
14,253
import tensorflow as tf max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=True, ) eval_input_fn = input_fn_builder( input_files=input_files, max_seq_length=FLAGS.max_seq_length, max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=False, ) tf.estimator.train_and_evaluate( estimator, train_spec=tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=100), eval_spec=tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=10), ) # if FLAGS.do_train: # tf.logging.info("***** Running training *****") # tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) # train_input_fn = input_fn_builder( # input_files=input_files, # max_seq_length=FLAGS.max_seq_length, # max_predictions_per_seq=FLAGS.max_predictions_per_seq, # is_training=True)
tensorflow.estimator.TrainSpec
14,254
import tensorflow as tf w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1)
tensorflow.name_scope
14,255
import tensorflow as tf def mgpu_train(*xs): gpu_ops = [] gpu_grads = [] xs = (tf.split(x, n_gpu, 0) for x in xs) for i, xs in enumerate(zip(*xs)): do_reuse = True if i > 0 else None with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=do_reuse):
tensorflow.split
14,256
import tensorflow as tf tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss), ] if linear_loss is not None: values.append(tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_linear_loss", simple_value=linear_loss)) test_summary = tf.Summary(value=values)
tensorflow.Summary.Value
14,257
import tensorflow as tf ) # add l2 regularization with tf.name_scope('weight_decay'): add_weight_decay(params['weight_decay']) regularization_loss = tf.losses.get_regularization_loss()
tensorflow.name_scope
14,258
import tensorflow as tf v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver([v0, v1]) tf.initialize_all_variables().run()
tensorflow.initialize_all_variables
14,259
import tensorflow as tf apply_attack_loop(hps) elif FLAGS.mode == 'tSNE_logits': if is_carliniL2 == True: tSNE_visual_carliniLi(hps,num_batch) else: tSNE_visual(hps,num_batch) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
tensorflow.app.run
14,260
import tensorflow as tf # segment. # # If you want to use the token-level output, use model_bak.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
tensorflow.truncated_normal_initializer
14,261
import tensorflow as tf if k: return tf.transpose(split_states(x, n), [0, 2, 3, 1]) else: return tf.transpose(split_states(x, n), [0, 2, 1, 3]) def merge_heads(x): #[-1,head,n_ctx,emb] return merge_states(tf.transpose(x, [0, 2, 1, 3])) def conv1d(x, scope, nf, rf, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), pad='VALID', train=False): with tf.variable_scope(scope): #x = [-1,n_ctx,512] nx = shape_list(x)[-1] #rf = 1,nx=emb,nf=3*emb
tensorflow.transpose
14,262
import tensorflow as tf A `TestData` tuple containing numpy values representing the results. """ def _adaptive_one_to_many_encode_decode(state): """Implementation of the method for `AdaptiveEncodingStageInterface`.""" server_graph = tf.Graph() with server_graph.as_default(): x = input_fn() shape = py_utils.static_or_dynamic_shape(x) if state is None:
tensorflow.Graph
14,263
import tensorflow as tf def conv2d(x, shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-1]]) h = h + b return h def deconv2d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape) h = tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride, stride, 1], padding=padding) if bias: b = bias_variable([shape[-2]]) h = h + b return h def conv3d(x, shape, name, bias=False, stride=2, padding='SAME'): with tf.variable_scope(name): W = weight_variable(shape)
tensorflow.variable_scope
14,264
import tensorflow as tf # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import tensorflow.contrib.metrics as metrics import tensorflow.contrib.rnn as rnn tf.logging.set_verbosity(tf.logging.INFO) SEQ_LEN = 10 DEFAULTS = [[0.0] for x in range(0, SEQ_LEN)] BATCH_SIZE = 20 TIMESERIES_INPUT_LAYER = 'rawdata' TIMESERIES_COL = '{}_input'.format(TIMESERIES_INPUT_LAYER) # In each sequence, column index 0 to N_INPUTS - 1 are features, and column index N_INPUTS to SEQ_LEN are labels
tensorflow.logging.set_verbosity
14,265
import tensorflow as tf key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T] alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape #output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1) output = facts * tf.expand_dims(alphas, -1) output = tf.reshape(output, tf.shape(facts)) # output = output / (facts.get_shape().as_list()[-1] ** 0.5) if not return_alphas: return output else: return output, alphas
tensorflow.expand_dims
14,266
import tensorflow as tf grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, dtype)) * stride box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2. box_x2y2 = box_xy + box_wh / 2. box = tf.concat([box_x1y1, box_x2y2], axis=-1) boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4))) objects.append(tf.reshape(obj, (x_shape[0], -1, 1))) classes.append(tf.reshape(cls, (x_shape[0], -1, num_classes))) boxes = tf.concat(boxes, axis=1) objects = tf.concat(objects, axis=1) classes = tf.concat(classes, axis=1) scores = objects * classes boxes, scores, classes, valid = tf.image.combined_non_max_suppression( boxes=boxes,
tensorflow.reshape
14,267
import tensorflow as tf w_c = tf.get_variable('w_c', [self.D, self.H], initializer=self.weight_initializer) b_c = tf.get_variable('b_c', [self.H], initializer=self.const_initializer) c = tf.nn.tanh(tf.matmul(features_mean, w_c) + b_c) return c, h
tensorflow.matmul
14,268
import tensorflow as tf "output_weights", shape=[2, bert_config.hidden_size], initializer=modeling.create_initializer(bert_config.initializer_range)) output_bias = tf.get_variable( "output_bias", shape=[2], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
tensorflow.matmul
14,269
import tensorflow as tf def circuit_input(self, h2, layer, var_scope, layer_idx): """Calculate gain and inh horizontal activities.""" gain_kernels = getattr(self, 'gain_kernels_%s' % layer) gain_bias = getattr(self, 'gain_bias_%s' % layer) horizontal_kernels = getattr(self, 'horizontal_kernels_%s' % layer) # h_bias = getattr(self, 'h_bias_%s' % layer) g1_intermediate = self.conv_3d_op( data=h2, weights=gain_kernels, strides=[1, 1, 1, 1, 1], symmetric_weights=self.symmetric_gate_weights, dilations=self.hgru_dilations[layer_idx]) with tf.variable_scope( '%s/g1_bn' % var_scope, reuse=self.scope_reuse) as scope: g1_intermediate = tf.contrib.layers.batch_norm( inputs=g1_intermediate + gain_bias, scale=True, center=False, fused=True, renorm=False, param_initializers=self.param_initializer, updates_collections=None, scope=scope,
tensorflow.variable_scope
14,270
import tensorflow as tf if self._apply_sigmoid_to_scores: class_predictions_with_background = tf.sigmoid( class_predictions_with_background) combined_feature_map_shape = shape_utils.combined_static_and_dynamic_shape( image_features) box_encodings = tf.reshape( box_encodings, tf.stack([combined_feature_map_shape[0], combined_feature_map_shape[1] * combined_feature_map_shape[2] * num_predictions_per_location, 1, self._box_code_size])) class_predictions_with_background = tf.reshape( class_predictions_with_background,
tensorflow.stack
14,271
import tensorflow as tf def build_training_model(self, x, y): """ This method will be called once by all data owners to create a local gradient computation on their machine. """ _, _, grads = self._build_model(x, y) return grads def _build_validation_model(self, x, y): predictions, loss, _ = self._build_model(x, y) most_likely = tf.argmax(predictions, axis=1) return most_likely, loss def _build_data_pipeline(self): def normalize(image, label): image = tf.cast(image, tf.float32) / 255.0 return image, label dataset = tf.data.TFRecordDataset(["./data/train.tfrecord"])
tensorflow.argmax
14,272
import tensorflow as tf for key, value in metrics.items(): key = 'metrics_{}_{}'.format(name, key) mean = tools.StreamingMean((), tf.float32, key) means.append(mean) updates.append(mean.submit(value)) with tf.control_dependencies(updates): # message = 'step/' + '/'.join(metrics.keys()) + ' = ' message = '{}: step/{} ='.format(name, '/'.join(metrics.keys())) gs = tf.train.get_or_create_global_step() print_metrics = tf.cond( tf.equal(step % every, 0), lambda: tf.print(message, [gs] + [mean.clear() for mean in means]), tf.no_op) return print_metrics
tensorflow.train.get_or_create_global_step
14,273
import tensorflow as tf return v if init: x = tf.nn.conv2d_transpose(x, tf.nn.l2_normalize(V.initialized_value(), [0, 1, 3]), target_shape, [1] + list(stride) + [1], padding=pad) init_scale = .01 m_init, v_init = tf.nn.moments(x, [0, 1, 2]) scale_init = init_scale / tf.sqrt(v_init + 1e-10) with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]): x = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x - tf.reshape(m_init, [1, 1, 1, num_filters])) else: V = maybe_avg(V) g = maybe_avg(g)
tensorflow.sqrt
14,274
import tensorflow as tf mask_ratio = mask_ratio * update_mask with tf.variable_scope('parconv'): x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding="SAME", name='zero-conv_' + id,
tensorflow.variable_scope
14,275
import tensorflow as tf test_data = dh.load_data_and_labels(args.test_file, args.word2vec_file, data_aug_flag=False) logger.info("Data padding...") x_test_content, x_test_question, x_test_option, y_test = dh.pad_data(test_data, args.pad_seq_len) # Load tarnn model OPTION = dh.option(pattern=1) if OPTION == 'B': logger.info("Loading best model...") checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True) else: logger.info("Loading latest model...") checkpoint_file = tf.train.latest_checkpoint(CPT_DIR) logger.info(checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=args.allow_soft_placement, log_device_placement=args.log_device_placement) session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x_content = graph.get_operation_by_name("input_x_content").outputs[0] input_x_question = graph.get_operation_by_name("input_x_question").outputs[0]
tensorflow.Graph
14,276
import tensorflow as tf if K.backend() == 'tensorflow': import tensorflow as tf I, J = tf.meshgrid(i, j, indexing=indexing) else:
tensorflow.meshgrid
14,277
import tensorflow as tf def LSGAN_losses(real, fake): d_real = tf.reduce_mean(tf.squared_difference(real, 1), name='d_real')
tensorflow.squared_difference
14,278
import tensorflow as tf self.g_variables = [var for var in trainable_variables if 'generator' in var.name] print ('Variable printing start :' ) for var in self.d_variables: print(var.name) self.test_image_A = tf.placeholder(tf.float32,[None, self.image_size,self.image_size,self.input_dim], name='test_A') self.test_image_B = tf.placeholder(tf.float32,[None, self.image_size, self.image_size,self.output_c_dim], name='test_B') self.saver = tf.train.Saver() def train_network(self): self.learning_rate = tf.placeholder(tf.float32)
tensorflow.placeholder
14,279
from tensorflow.python.ops import array_ops return array_ops.reshape( math_ops.to_float(features[self._weight_column_name]), shape=(-1,)) @property def problem_type(self): return self._problem_type def _weighted_loss(self, loss, weight_tensor): """Returns cumulative weighted loss.""" unweighted_loss = array_ops.reshape(loss, shape=(-1,)) weighted_loss = math_ops.multiply(unweighted_loss, array_ops.reshape( weight_tensor, shape=(-1,))) return weighted_loss def training_loss(self, logits, target, features, name="training_loss"): """Returns training loss tensor for this head. Training loss is different from the loss reported on the tensorboard as we should respect the example weights when computing the gradient. L = sum_{i} w_{i} * l_{i} / B
tensorflow.python.ops.array_ops.reshape
14,280
import tensorflow as tf 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('InceptionV2', reuse=self._reuse_weights) as scope: _, image_features = inception_v2.inception_v2_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Mixed_5c', min_depth=self._min_depth,
tensorflow.variable_scope
14,281
import tensorflow as tf """ class PolicyEstimator_Pendulum(): def __init__(self, entropy_beta=0.01, learning_rate=0.01, par_idx=0,scope="policy_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state, target and action self.state = tf.placeholder(tf.float32, [None,num_state], name="state") self.target = tf.placeholder(tf.float32,[None,1], name="target") self.a_his = tf.placeholder(tf.float32, [None, num_action], name="action_hist") # layers l_a = tf.layers.dense(self.state, 200, tf.nn.relu6, kernel_initializer=w_init, name='la') self.mu = tf.layers.dense(l_a, num_action, tf.nn.tanh, kernel_initializer=w_init, name='mu') # estimated action value self.sigma = tf.layers.dense(l_a, num_action, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance # wrap output self.mu = self.mu * action_bound[1]; self.sigma = self.sigma + 1e-4 # get action from distribution self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma) self.action = tf.squeeze(self.normal_dist.sample(1),axis=0); self.action = tf.clip_by_value(self.action, action_bound[0], action_bound[1]) # Loss and train op self.loss = -self.normal_dist.log_prob(self.a_his) * self.target # Add cross entropy cost to encourage exploration
tensorflow.layers.dense
14,282
from tensorflow.python.training import saver supervisor_master=self._config.master, feed_fn=feed_fn, max_steps=steps) return eval_results def _infer_model(self, x, batch_size=None, axis=None, proba=False): # Converts inputs into tf.DataFrame / tf.Series. batch_size = -1 if batch_size is None else batch_size input_fn, feed_fn = _get_predict_input_fn(x, batch_size) checkpoint_path = saver.latest_checkpoint(self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) contrib_framework.create_global_step(g) features, _ = input_fn() feed_dict = feed_fn() if feed_fn is not None else None predictions = self._get_predict_ops(features) if not isinstance(predictions, dict): predictions = {'predictions': predictions} # TODO(ipolosukhin): Support batching
tensorflow.python.training.saver.latest_checkpoint
14,283
import tensorflow as tf x = self.__conv2d("conv_1", x, filter_depth=64, kernel_size=7, stride=2, padding='valid') x = self.__batch_norm("bn_1", x) x = tf.nn.relu(x) x = tf.keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding = 'same')(x) x = self.__conv_block(stage=0, block=0, inputs=x, filter_depths=[32, 32, 128], kernel_size=3, stride=1) x = self.__identity_block(stage=0, block=1, inputs=x,
tensorflow.keras.layers.MaxPool2D
14,284
import tensorflow as tf else: groundtruth_confidences = tf.ones_like( zero_indexed_groundtruth_classes, dtype=tf.float32) tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( tensor_dict[fields.InputDataFields.groundtruth_classes]) if merge_multiple_boxes: merged_boxes, merged_classes, merged_confidences, _ = ( util_ops.merge_boxes_with_multiple_labels( tensor_dict[fields.InputDataFields.groundtruth_boxes], zero_indexed_groundtruth_classes, groundtruth_confidences, num_classes)) merged_classes = tf.cast(merged_classes, tf.float32) tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( merged_confidences) if fields.InputDataFields.groundtruth_boxes in tensor_dict: tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape( tensor_dict[fields.InputDataFields.groundtruth_boxes])[0] return tensor_dict def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes,
tensorflow.cast
14,285
import tensorflow as tf # FIXME: augment error:tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[0] = 0 is not in [0, 0) tf.logging.info('Starting a training cycle.') fashionAI.train(input_fn=lambda : input_pipeline(True, model_scope, epochs_per_eval), hooks=[logging_hook], max_steps=(steps_per_epoch*train_epochs)) tf.logging.info('Starting to evaluate.') eval_results = fashionAI.evaluate(input_fn=lambda : input_pipeline(False, model_scope, 1)) tf.logging.info(eval_results) tf.logging.info('Finished model {}.'.format(model_scope))
tensorflow.logging.info
14,286
import tensorflow as tf gcnn_models += ['mean_convolution', 'no_prenorm'] result_file = f"results/{args.problem}_test_{time.strftime('%Y%m%d-%H%M%S')}" result_file = result_file + '.csv' os.makedirs('results', exist_ok=True) ### TENSORFLOW SETUP ### if args.gpu == -1: os.environ['CUDA_VISIBLE_DEVICES'] = '' else: os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}' config = tf.ConfigProto() config.gpu_options.allow_growth = True tf.enable_eager_execution(config) tf.executing_eagerly() test_files = list(pathlib.Path(f"data/samples/{problem_folder}/test").glob('sample_*.pkl')) test_files = [str(x) for x in test_files] print(f"{len(test_files)} test samples") evaluated_policies = [['gcnn', model] for model in gcnn_models] + \ [['ml-competitor', model] for model in other_models] fieldnames = [ 'policy', 'seed',
tensorflow.enable_eager_execution
14,287
import tensorflow as tf self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [None, None, 3]) def test_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 5]), fields.InputDataFields.image_additional_channels: tf.placeholder(tf.float32, [None, None, 2]), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3,
tensorflow.placeholder
14,288
import tensorflow as tf Return the input tensor, offset by a certain value :param input_tensor: (TensorFlow Tensor) The input tensor :param idx: (int) The index offset :return: (TensorFlow Tensor) the offset tensor """ assert len(input_tensor.get_shape()) == 2 assert len(idx.get_shape()) == 1 idx_flattened = tf.range(0, input_tensor.shape[0], dtype=tf.int64) * input_tensor.shape[1] + idx offset_tensor = tf.gather(tf.reshape(input_tensor, [-1]), # flatten input idx_flattened) # use flattened indices return offset_tensor def strip(var, n_envs, n_steps, flat=False): """ Removes the last step in the batch
tensorflow.reshape
14,289
import tensorflow as tf ''' pass def loss(logits, labels): ''' Compute loss ''' with tf.name_scope('loss') as scope: cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='cross-entropy') loss = tf.reduce_mean(cross_entropy, name='loss') tf.summary.scalar(scope+'/loss', loss) return loss
tensorflow.name_scope
14,290
import tensorflow as tf # loss = tf.maximum(0.0, tf.math.abs(tgt_larg - pred_larg) - tf.math.abs(tgt_small - pred_small)) loss = tf.reduce_mean(loss) return loss def contra_step_lossV5(pred, tgt, resample=1): # p = tf.print('begin loss v5', [resample, pred.shape,tgt.shape]) # with tf.control_dependencies([p]): pred_flat = tf.reshape(pred, [-1]) tgt_flat = tf.reshape(tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) num_sam = tools.shape(batch)[0] index = tf.range(num_sam) divider = tf.constant(resample, dtype=tf.float32) def sample_compute(cur_loss, i): batch1 = tf.gather(batch, tf.random.shuffle(index)) batch2 = tf.gather(batch, tf.random.shuffle(index))
tensorflow.reshape
14,291
import tensorflow as tf initializer=tf.constant_initializer(self.dale_out), trainable=False) # Connectivity weight matrices: self.input_Connectivity = tf.get_variable('input_Connectivity', [N_rec, N_in], initializer=tf.constant_initializer( self.input_connectivity_mask), trainable=False) self.rec_Connectivity = tf.get_variable('rec_Connectivity', [N_rec, N_rec], initializer=tf.constant_initializer( self.recurrent_connectivity_mask), trainable=False) self.output_Connectivity = tf.get_variable('output_Connectivity', [N_out, N_rec], initializer=tf.constant_initializer( self.output_connectivity_mask), trainable=False) # ------------------------------------------------
tensorflow.constant_initializer
14,292
import tensorflow as tf elif encoder.cell_type.lower() == 'dropoutgru': cell = DropoutGRUCell(encoder.cell_size, reuse=reuse, layer_norm=encoder.layer_norm, input_size=input_size, input_keep_prob=encoder.rnn_input_keep_prob, state_keep_prob=encoder.rnn_state_keep_prob) else: cell = GRUCell(encoder.cell_size, reuse=reuse, layer_norm=encoder.layer_norm) if encoder.use_dropout and encoder.cell_type.lower() != 'dropoutgru': cell = DropoutWrapper(cell, input_keep_prob=encoder.rnn_input_keep_prob, output_keep_prob=encoder.rnn_output_keep_prob, state_keep_prob=encoder.rnn_state_keep_prob, variational_recurrent=encoder.pervasive_dropout, dtype=tf.float32, input_size=input_size) return cell batch_size = tf.shape(encoder_inputs_)[0] time_steps = tf.shape(encoder_inputs_)[1] if embeddings is not None: flat_inputs = tf.reshape(encoder_inputs_, [tf.multiply(batch_size, time_steps)]) flat_inputs = tf.nn.embedding_lookup(embeddings, flat_inputs) encoder_inputs_ = tf.reshape(flat_inputs, tf.stack([batch_size, time_steps, flat_inputs.get_shape()[1].value])) if pos_embeddings is not None: pos_inputs_ = tf.range(time_steps, dtype=tf.int32) pos_inputs_ = tf.nn.embedding_lookup(pos_embeddings, pos_inputs_) pos_inputs_ = tf.tile(tf.expand_dims(pos_inputs_, axis=0), [batch_size, 1, 1]) encoder_inputs_ = tf.concat([encoder_inputs_, pos_inputs_], axis=2) if other_inputs is not None:
tensorflow.shape
14,293
import tensorflow as tf if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") if not tf.gfile.Exists(train_file) or not FLAGS.data_converted: file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True)
tensorflow.logging.info
14,294
import tensorflow as tf output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels): """Computes the loss and accuracy of the model.""" masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights)
tensorflow.reshape
14,295
import tensorflow as tf self.vars=self.vars[-1*NUM_VARS:]; self.train_op = self.optimizer.apply_gradients( self.grads_and_vars, global_step=tf.contrib.framework.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() return sess.run(self.action, { self.state: [state] })[0] def update(self, state, target, a_his, sess=None): sess = sess or tf.get_default_session() feed_dict = { self.state: state, self.target: target, self.a_his: a_his } _, loss = sess.run([self.train_op, self.loss], feed_dict) return loss class ValueEstimator_Pendulum(): def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)):
tensorflow.get_default_session
14,296
import tensorflow as tf status = True if status: box_limits_x = [100, -100] # box_limits_y = [100, -100] box_limits_z = [100, -100] for i in range(labeled_translations.shape[0]): rot = tf.reshape(tf.gather(labeled_rotations[i], [0, 2, 6, 8]), [2, 2]) min_x = tf.cast(0.0 - labeled_sizes[i][0] / 2.0, dtype=tf.float32) max_x = tf.cast(0.0 + labeled_sizes[i][0] / 2.0, dtype=tf.float32) # min_y = tf.cast(0.0 - labeled_sizes[i][1] / 2.0, dtype=tf.float32) # max_y = tf.cast(0.0 + labeled_sizes[i][1] / 2.0, dtype=tf.float32) min_z = tf.cast(0.0 - labeled_sizes[i][2] / 2.0, dtype=tf.float32) max_z = tf.cast(0.0 + labeled_sizes[i][2] / 2.0, dtype=tf.float32) translation = tf.reshape([labeled_translations[i][0], labeled_translations[i][2]], [2, 1])
tensorflow.cast
14,297
import tensorflow as tf def get_mention_scores(self, span_emb): with tf.variable_scope("mention_scores"):
tensorflow.variable_scope
14,298
import tensorflow as tf with tf.variable_scope(scope): shape = tf.shape(inputs) dim = inputs.get_shape().as_list()[-1] out_shape = [shape[idx] for idx in range( len(inputs.get_shape().as_list()) - 1)] + [hidden] flat_inputs = tf.reshape(inputs, [-1, dim]) W = tf.get_variable("W", [dim, hidden]) res = tf.matmul(flat_inputs, W) if use_bias: b = tf.get_variable( "b", [hidden], initializer=tf.constant_initializer(0.)) res = tf.nn.bias_add(res, b) res = tf.reshape(res, out_shape) return res
tensorflow.reshape
14,299