seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf self.reward = self.valid_acc if self.entropy_weight is not None: self.reward += self.entropy_weight * self.sample_entropy self.sample_log_prob = tf.reduce_sum(self.sample_log_prob) self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False) baseline_update = tf.assign_sub( self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward)) with tf.control_dependencies([baseline_update]): self.reward = tf.identity(self.reward) self.loss = self.sample_log_prob * (self.reward - self.baseline) self.train_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="train_step") tf_variables = [var for var in tf.trainable_variables() if var.name.startswith(self.name)] print("-" * 80) for var in tf_variables: print(var) self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops( self.loss, tf_variables, self.train_step, clip_mode=self.clip_mode, grad_bound=self.grad_bound, l2_reg=self.l2_reg,
tensorflow.Variable
13,600
import tensorflow as tf method=2) tf.summary.image('Compare/gtboxes_q_gpu:%d' % i, gtboxes_in_img_q) gtboxes_in_img_h = self.drawer.draw_boxes_with_categories( img_batch=tf.expand_dims(img[0, :, :, :], axis=0), boxes=gtboxes_and_label_h[0, :, :-1], labels=gtboxes_and_label_h[0, :, -1], method=0)
tensorflow.expand_dims
13,601
import tensorflow as tf ls = [-1] + l.get_shape().as_list()[1:] xs = ls[:-1] + [3] # unpack parameters logit_probs = l[:, :, :, :nr_mix] l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3]) # sample mixture indicator from softmax sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform( tf.shape(logit_probs), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32) sel = tf.reshape(sel, xs[:-1] + [1, nr_mix]) # select logistic parameters means = tf.reduce_sum(l[:, :, :, :, :nr_mix] * sel, 4) log_scales = tf.maximum(tf.reduce_sum( l[:, :, :, :, nr_mix:2 * nr_mix] * sel, 4), -7.) coeffs = tf.reduce_sum(tf.nn.tanh( l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4) # sample from logistic & clip to interval # we don't actually round to the nearest 8bit value when sampling u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5) x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u)) x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.) x1 = tf.minimum(tf.maximum( x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.) x2 = tf.minimum(tf.maximum( x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.) return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
tensorflow.nn.tanh
13,602
import tensorflow as tf @pytest.mark.parametrize('white', [True, False]) def test_diags(session_tf, white, mu, sqrt_diag, K): """ The covariance of q(x) can be Cholesky matrices or diagonal matrices. Here we make sure the behaviours overlap. """ # the chols are diagonal matrices, with the same entries as the diag representation. chol_from_diag = tf.stack([tf.diag(sqrt_diag[:, i]) for i in range(Datum.N)]) # N x M x M # run kl_diag = gauss_kl(mu, sqrt_diag, K if white else None) kl_dense = gauss_kl(mu, chol_from_diag, K if white else None) np.testing.assert_allclose(kl_diag.eval(), kl_dense.eval()) @pytest.mark.parametrize('diag', [True, False])
tensorflow.diag
13,603
import tensorflow as tf name='y') self.example_weights = tf.placeholder(tf.float32, [batch_size],
tensorflow.placeholder
13,604
import tensorflow as tf "MSE": mse, "eval_loss": loss,} elif task_name == "cola": def metric_fn(per_example_loss, label_ids, logits, is_real_example): """Compute Matthew's correlations for STS-B.""" predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) # https://en.wikipedia.org/wiki/Matthews_correlation_coefficient tp, tp_op = tf.metrics.true_positives( predictions, label_ids, weights=is_real_example) tn, tn_op = tf.metrics.true_negatives( predictions, label_ids, weights=is_real_example) fp, fp_op = tf.metrics.false_positives( predictions, label_ids, weights=is_real_example) fn, fn_op = tf.metrics.false_negatives( predictions, label_ids, weights=is_real_example) # Compute Matthew's correlation
tensorflow.metrics.true_negatives
13,605
import tensorflow as tf train = dataset['train'].map( load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) test = dataset['test'].map(load_image_test) train_dataset = train.cache().shuffle(1000).batch(batch_size).repeat() train_dataset = train_dataset.prefetch( buffer_size=tf.data.experimental.AUTOTUNE) test_dataset = test.batch(batch_size) config = hparams_config.get_efficientdet_config('efficientdet-d0') config.heads = ['segmentation'] model = efficientdet_keras.EfficientDetNet(config=config) model.build((1, 512, 512, 3)) model.compile( optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) val_subsplits = 5 val_steps = info.splits['test'].num_examples // batch_size // val_subsplits model.fit( train_dataset, epochs=20, steps_per_epoch=steps_per_epoch, validation_steps=val_steps, validation_data=test_dataset, callbacks=[]) model.save_weights('./test/segmentation')
tensorflow.keras.losses.SparseCategoricalCrossentropy
13,606
import tensorflow as tf Return: A tuple of `SparseTensor` (neibors, weights). neighbors: A `SparseTensor` of `int64`. weights: A `SparseTensor` of `float`. types: A `SparseTensor` of `int32` """ sp_returns = base._LIB_OP.get_full_neighbor(nodes, edge_types) return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \ tf.SparseTensor(*sp_returns[6:]) def get_sorted_full_neighbor(nodes, edge_types): """ Args:
tensorflow.SparseTensor
13,607
from tensorflow.python.client import device_lib from data_generator.data_augmentation_chain_original_ssd import SSDDataAugmentation from data_generator.object_detection_2d_misc_utils import apply_inverse_transforms from tensorflow.python.lib.io import file_io import argparse from tensorflow.python.client import device_lib print("CHECK GPU USAGE!") print(device_lib.list_local_devices()) K.tensorflow_backend._get_available_gpus() img_height = 300 # Height of the model input images img_width = 300 # Width of the model input images img_channels = 3 # Number of color channels of the model input images mean_color = [123, 117, 104] # The per-channel mean of the images in the dataset. Do not change this value if you're using any of the pre-trained weights.
tensorflow.python.client.device_lib.list_local_devices
13,608
import tensorflow as tf inputs_ = encoder_inputs_ inputs_ = tf.nn.convolution(inputs_, filter=filter_, padding='VALID') inputs.append(inputs_) encoder_inputs_ = tf.concat(inputs, axis=2) # if encoder.convolution_activation.lower() == 'relu': encoder_inputs_ = tf.nn.relu(encoder_inputs_) if encoder.maxout_stride: if encoder.binary: raise NotImplementedError stride = encoder.maxout_stride k = tf.to_int32(tf.ceil(time_steps / stride) * stride) - time_steps # TODO: simpler pad = tf.zeros([batch_size, k, tf.shape(encoder_inputs_)[2]]) encoder_inputs_ = tf.concat([encoder_inputs_, pad], axis=1) encoder_inputs_ = tf.nn.pool(encoder_inputs_, window_shape=[stride], pooling_type='MAX', padding='VALID', strides=[stride]) encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / stride)) if encoder.highway_layers: x = encoder_inputs_ for j in range(encoder.highway_layers): size = x.shape[2].value with tf.variable_scope('highway_{}'.format(j + 1)): g = tf.layers.dense(x, size, activation=tf.nn.sigmoid, use_bias=True, name='g')
tensorflow.ceil
13,609
import tensorflow as tf reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) vf = tf.layers.dense(layer_c2, 1, kernel_regularizer=reg) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
tensorflow.layers.dense
13,610
import tensorflow as tf z2 = tf.where(x2 > self.epsilon, z2, x2) ldj = tf.where(x2 > self.epsilon, ldj, tf.zeros_like(ldj)) return z2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def _inverse(self, x1, z2, **kwargs): params = self.parameterizer(x1) mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] x2, ldj = log_gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True)) x2 = tf.where(z2 > self.epsilon, x2, z2) ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj)) return x2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)): if inverse:
tensorflow.constant
13,611
import tensorflow as tf mask = tf.cast(tf.not_equal(target, tf.zeros_like(target)), dtype=tf.float32) out = cross_entropy * mask return out @layer def sigmoid_cross_entropy_layer(tensor, target, **opts): out = tf.nn.sigmoid_cross_entropy_with_logits(logits=tensor, labels=target) return out @layer def mean_loss_by_example_layer(tensor, sequence_length, **opts): loss = tf.div( tf.reduce_sum(tensor, axis=1), tf.cast(sequence_length, dtype=tf.float32) ) out = tf.reduce_mean(loss) tf.summary.scalar('cost', out) return out @layer def conv1d_layer(tensor, dilation_rate=1, **opts): raise NotImplementedError @layer def residual_layer(tensor, **opts): raise NotImplementedError
tensorflow.cast
13,612
import tensorflow as tf w = tf.get_variable('w', [self.fc2.get_shape()[1], num_classes], initializer=initializer, regularizer=regularizer) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0)) self.fc3 = tf.matmul(self.fc2, w) + b # Calculate Mean cross-entropy loss with tf.name_scope("loss"): self.predictions = tf.argmax(self.fc3, 1, name="predictions") losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.fc3, labels=self.input_y) regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.loss = tf.reduce_mean(losses) + sum(regularization_losses) # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
tensorflow.nn.softmax_cross_entropy_with_logits
13,613
import tensorflow as tf W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7") b7 = utils.bias_variable([4096], name="b7") conv7 = utils.conv2d_basic(relu_dropout6, W7, b7) relu7 = tf.nn.relu(conv7, name="relu7") if FLAGS.debug: utils.add_activation_summary(relu7)
tensorflow.nn.relu
13,614
import tensorflow as tf # Support for verisons of TensorFlow before 0.7.0 except AttributeError: deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape, strides=[1, d_h, d_w, 1]) biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0)) deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape()) if with_w: return deconv, w, biases else: return deconv
tensorflow.nn.bias_add
13,615
import tensorflow as tf l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2
tensorflow.matmul
13,616
import tensorflow as tf if self.dale_ratio: new_state = (1-self.alpha) * state \ + self.alpha * ( tf.matmul( tf.nn.relu(state), tf.matmul( tf.abs(self.W_rec) * self.rec_Connectivity, self.Dale_rec, name="in_1"), transpose_b=True, name="1") + tf.matmul( rnn_in, tf.abs(self.W_in) * self.input_Connectivity, transpose_b=True, name="2") + self.b_rec)\ + np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\ * tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0) else: new_state = ((1-self.alpha) * state) \ + self.alpha * ( tf.matmul( tf.nn.relu(state), self.W_rec * self.rec_Connectivity,
tensorflow.abs
13,617
import tensorflow as tf Args: x: A `Tensor` or `CompositeTensor`. reduce_instance_dims: By default collapses the batch and instance dimensions to arrive at a single scalar output. If False, only collapses the batch dimension and outputs a vector of the same shape as the input. name: (Optional) A name for this operation. Returns: A `Tensor`. Has the same type as `x`. Raises: TypeError: If the type of `x` is not supported. """ with tf.compat.v1.name_scope(name, 'max'): return _min_and_max(x, reduce_instance_dims, name)[1] def _min_and_max(x: common_types.TensorType, reduce_instance_dims: bool = True, name: Optional[str] = None) -> Tuple[tf.Tensor, tf.Tensor]: """Computes the min and max of the values of a `Tensor` or `CompositeTensor`. In the case of a `CompositeTensor` missing values will be used in return value: for float, NaN is used and for other dtypes the min is used.
tensorflow.compat.v1.name_scope
13,618
import tensorflow as tf weighted_average_ = tf.reduce_sum(tf.expand_dims(weights_, axis=2) * hidden_states, axis=1) weighted_average.append(weighted_average_) weighted_average = tf.concat(weighted_average, axis=1) weighted_average = dense(weighted_average, encoder.attn_size) elif pos is not None: weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length)) weighted_average = tf.reduce_sum(tf.expand_dims(weights, axis=2) * hidden_states, axis=1) else: # Local attention of Luong et al. (http://arxiv.org/abs/1508.04025) wp = get_variable('Wp', [state_size, state_size]) vp = get_variable('vp', [state_size, 1]) pos = tf.nn.sigmoid(tf.matmul(tf.nn.tanh(tf.matmul(state, wp)), vp))
tensorflow.expand_dims
13,619
import tensorflow as tf hooks.append(tf.data.experimental.CheckpointInputPipelineHook(estimator)) train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps, hooks=hooks) eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=FLAGS.max_eval_steps) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
tensorflow.estimator.EvalSpec
13,620
import tensorflow as tf # Remove episode indices. num_episodes = tf.count_nonzero( input_tensor=tf.gather(params=self.terminal_memory, indices=indices), axis=0, dtype=util.tf_dtype('int') ) num_episodes = tf.minimum(x=num_episodes, y=self.episode_count) assignment = tf.assign( ref=self.episode_indices[:self.episode_count - num_episodes], value=self.episode_indices[num_episodes: self.episode_count] ) # Decrement episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_sub(ref=self.episode_count, value=num_episodes) # Assign new observations. with tf.control_dependencies(control_inputs=(assignment,)): assignments = list() for name in sorted(states): assignments.append(tf.scatter_update( ref=self.states_memory[name], indices=indices, updates=states[name] )) for name in sorted(internals): assignments.append(tf.scatter_update(
tensorflow.control_dependencies
13,621
import tensorflow as tf observ_shape = self._parse_shape(self._batch_env.observation_space) print(observ_shape) observ_dtype = self._parse_dtype(self._batch_env.observation_space) print(observ_dtype) action_shape = self._parse_shape(self._batch_env.action_space) print(action_shape) action_dtype = self._parse_dtype(self._batch_env.action_space) print(action_dtype) with tf.variable_scope('env_temporary'): self._observ = tf.Variable( lambda: tf.zeros(batch_dims + observ_shape, observ_dtype), name='observ', trainable=False) self._action = tf.Variable( lambda: tf.zeros(batch_dims + action_shape, action_dtype), name='action', trainable=False) self._reward = tf.Variable( lambda: tf.zeros(batch_dims, tf.float32), name='reward', trainable=False) self._done = tf.Variable( lambda: tf.cast(tf.ones(batch_dims), tf.bool),
tensorflow.zeros
13,622
import tensorflow as tf def testSliceVariable(self): test_dir = self._TestDir("slice_saver") filename = os.path.join(test_dir, "metafile") with self.test_session(): v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # The names are different and will work. slice_saver = tf.train.Saver({"first": v1, "second": v2}) tf.initialize_all_variables().run()
tensorflow.Variable
13,623
import tensorflow as tf to_tf = tf.transpose(reshaped, [0, 2, 3, 1]) return to_tf def _softmax_layer(self, bottom, name): if name == 'rpn_cls_prob_reshape': input_shape = tf.shape(bottom) # tf.reshape()中-1的应用,-1表示不知道该填什么数字合适的情况下,可以选择,由python通过原数组和其他的值推测出来 # 每一行是1个anchor的前景、背景得分,先显示所有点产生的第一种anchor,然后是所有点产生的第二种anchor,........ bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]]) reshaped_score = tf.nn.softmax(bottom_reshaped, name=name) return tf.reshape(reshaped_score, input_shape) # [1,none,none,2] return tf.nn.softmax(bottom, name=name) def _proposal_top_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name): rois, rpn_scores = tf.py_func(proposal_top_layer, [rpn_cls_prob, rpn_bbox_pred, self._im_info,
tensorflow.reshape
13,624
import tensorflow as tf num_users = params["num_users"] num_items = params["num_items"] users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=num_users) items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=num_items) if is_training: valid_point_mask = tf.cast(tf.random_uniform( [batch_size], dtype=tf.int32, minval=0, maxval=2), tf.bool) labels = tf.cast(tf.random_uniform( [batch_size], dtype=tf.int32, minval=0, maxval=2), tf.bool) data = { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, rconst.VALID_POINT_MASK: valid_point_mask, }, labels
tensorflow.random_uniform
13,625
import tensorflow as tf normalizers_copy_parameters = normalizers_copy.parameters(trainable=False, non_trainable=True) copy_normalizers = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(normalizers_copy_parameters, normalizers_parameters)])
tensorflow.assign
13,626
from tensorflow.python.ops import math_ops def _apply_sparse_shared(self, grad, var, indices, scatter_add): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
tensorflow.python.ops.math_ops.cast
13,627
import tensorflow as tf import time from itertools import product, combinations from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from plotting import newfig, savefig from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.gridspec as gridspec np.random.seed(1234) tf.set_random_seed(1234) class PhysicsInformedNN: from setup_PINN_ns import __init__ from initialize_PINN_ns import initialize_NN from xavier_init_ns import xavier_init from def_NN_ns import neural_net from def_Net_NS import net_NS from func_call_ns import callback
tensorflow.set_random_seed
13,628
import tensorflow as tf # iterations will make the summary writer only flush the data to storage # once per loop. with (tf.contrib.summary.create_file_writer( params['model_dir'],
tensorflow.contrib.summary.create_file_writer
13,629
import tensorflow as tf col_layers[c].append(self.top_layer) col_layer_sizes[c].append(self.top_size) catdim = 3 if self.data_format == 'NHWC' else 1 self.top_layer = tf.concat([layers[-1] for layers in col_layers], catdim) self.top_size = sum([sizes[-1] for sizes in col_layer_sizes]) return self.top_layer def residual(self, nout, net, scale=1.0): inlayer = self.top_layer net(self) self.conv(nout, 1, 1, activation=None) self.top_layer = tf.nn.relu(inlayer + scale * self.top_layer) def spatial_mean(self, keep_dims=False): name = 'spatial_mean' + str(self.counts['spatial_mean']) self.counts['spatial_mean'] += 1 axes = [1, 2] if self.data_format == 'NHWC' else [2, 3] self.top_layer = tf.reduce_mean( self.top_layer, axes, keep_dims=keep_dims, name=name) return self.top_layer def dropout(self, keep_prob=0.5, input_layer=None):
tensorflow.nn.relu
13,630
import tensorflow as tf self._train_op = tf.get_collection_ref('train_op')[0] self._lr = tf.get_collection_ref('lr')[0] self._new_lr = tf.get_collection_ref('new_lr')[0] self._lr_update = tf.get_collection_ref('lr_update')[0] rnn_params = tf.get_collection_ref('rnn_params') if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope='Model/RNN')
tensorflow.contrib.cudnn_rnn.RNNParamsSaveable
13,631
import tensorflow as tf class ModelOwner: LEARNING_RATE = 0.1 ITERATIONS = 60000 // 30 def __init__(self, player_name): self.player_name = player_name with tf.device(tfe.get_config().get_player(player_name).device_name): self._initialize_weights() def _initialize_weights(self): with tf.name_scope('parameters'): self.w0 = tf.Variable(tf.random_normal([28 * 28, 512])) self.b0 = tf.Variable(tf.zeros([512])) self.w1 = tf.Variable(tf.random_normal([512, 10])) self.b1 = tf.Variable(tf.zeros([10])) def _build_model(self, x, y): w0 = self.w0.read_value() b0 = self.b0.read_value() w1 = self.w1.read_value() b1 = self.b1.read_value() params = (w0, b0, w1, b1)
tensorflow.name_scope
13,632
import tensorflow as tf tgt1 = tf.gather(tgt, even) tgt2 = tf.gather(tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) # loss = tf.maximum(0.0, tf.math.abs(tgt_larg - pred_larg) - tf.math.abs(tgt_small - pred_small)) loss = tf.reduce_mean(loss)
tensorflow.where
13,633
import tensorflow as tf def _scipy_pareto(self, concentration, scale): # In scipy pareto is defined with scale = 1, so we need to scale. return stats.pareto(concentration, scale=scale) def testParetoShape(self): scale = tf.constant([2.] * 5) concentration = tf.constant([2.] * 5) pareto = tfd.Pareto(concentration, scale) self.assertEqual(self.evaluate(pareto.batch_shape_tensor()), (5,))
tensorflow.constant
13,634
import tensorflow as tf return samples, logits, loss # Create an initial output tensor. This will be passed # to the infer_step, which adds one timestep at every iteration. if "partial_targets" in features: initial_output = tf.to_int64(features["partial_targets"]) while len(initial_output.get_shape().as_list()) < 4: initial_output = tf.expand_dims(initial_output, 2) batch_size = common_layers.shape_list(initial_output)[0] else: batch_size = common_layers.shape_list(features["inputs"])[0] initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64) # Hack: foldl complains when the output shape is less specified than the # input shape, so we confuse it about the input shape.
tensorflow.expand_dims
13,635
import tensorflow as tf output_dtype = _FLOAT_OUTPUT_DTYPE_MAP.get(x.dtype) if output_dtype is None: raise TypeError('Tensor type %r is not supported' % x.dtype) if not reduce_instance_dims and isinstance(x, tf.RaggedTensor): raise NotImplementedError( 'Elementwise mean_and_var does not support RaggedTensors.') with tf.compat.v1.name_scope('mean_and_var'): x = tf.cast(x, output_dtype) x_count, x_mean, x_variance = ( tf_utils.reduce_batch_count_mean_and_var(x, reduce_instance_dims)) combine_inputs = _WeightedMeanAndVarAccumulator( count=x_count, mean=x_mean, variance=x_variance,
tensorflow.cast
13,636
import tensorflow as tf tfrecord_writer = tf.python_io.TFRecordWriter(record_filename)
tensorflow.python_io.TFRecordWriter
13,637
import tensorflow as tf use_spectral_norm, is_training, None, conv_dims=2) def hw_flatten(x): return tf.reshape(x, shape=[x.shape[0], -1, x.shape[-1]]) # N = h * w s = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True) # # [bs, N, N] beta = tf.nn.softmax(s, axis=-1) # attention map
tensorflow.reshape
13,638
from tensorflow.python.ops import array_ops quantizer: `Quantizer` used to quantize tensors. **kwargs: Additional keyword arguments to be passed to the keras layer. """ super(VitisGlobalAveragePooling2D, self).__init__(**kwargs) def build(self, input_shape): super(VitisGlobalAveragePooling2D, self).build(input_shape) def call(self, inputs): outputs = super(VitisGlobalAveragePooling2D, self).call(inputs) # Simulate DPU hahavior of AvgPooling input_shape = array_ops.shape(inputs) rescale_factor = _get_avgpool_scale(input_shape[1], input_shape[2]) if rescale_factor != 1.0: outputs *= rescale_factor return outputs @register_keras_serializable(package='Vitis', name='AveragePooling2D') class VitisAveragePooling2D(tf.keras.layers.AveragePooling2D): """Vitis version of AveragePooling2D layer.
tensorflow.python.ops.array_ops.shape
13,639
import tensorflow as tf tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b) # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
tensorflow.tensordot
13,640
import tensorflow as tf sample_grid = tf.tile( tf.linspace(float(z_near), float(z_far), depth), [width * height]) z_t = tf.reshape(sample_grid, [height, width, depth]) z_t = tf.transpose(z_t, [2, 0, 1]) z_t = 1 / z_t d_t = 1 / z_t x_t /= z_t y_t /= z_t x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) d_t_flat = tf.reshape(d_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0) return grid def _transform(theta, input_dim, out_size, z_near, z_far): with tf.variable_scope('_transform'): num_batch = input_dim.get_shape().as_list()[0] num_channels = input_dim.get_shape().as_list()[4]
tensorflow.reshape
13,641
import tensorflow as tf epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out]) hyp_params = tf.get_variable('hyp_params_layer'+str(h), shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer else: F = tf.squeeze(tf.layers.dense(Z, n_out), [2]) return F, KL
tensorflow.concat
13,642
from tensorflow.python.framework import constant_op 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_dense(self): """Tests only dense inputs. """ op = sparse_feature_cross_op.sparse_feature_cross([ constant_op.constant([['batch1-FC1-F1', 'batch1-FC1-F2'], ['batch2-FC1-F1', 'batch2-FC1-F2']], dtypes.string), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) expected_out = self._sparse_tensor([[ 'batch1-FC1-F1_X_batch1-FC2-F1', 'batch1-FC1-F1_X_batch1-FC2-F2', 'batch1-FC1-F2_X_batch1-FC2-F1', 'batch1-FC1-F2_X_batch1-FC2-F2' ], [ 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op))
tensorflow.python.framework.constant_op.constant
13,643
import tensorflow as tf conv, [1, 1, max_chars-width+1, 1], [1, 1, 1, 1], 'VALID') # activation conv = activation(conv) conv = tf.squeeze(conv, squeeze_dims=[2]) convolutions.append(conv) return tf.concat(convolutions, 2) embedding = make_convolutions(self.char_embedding) # for highway and projection layers n_highway = cnn_options.get('n_highway') use_highway = n_highway is not None and n_highway > 0 use_proj = n_filters != projection_dim
tensorflow.concat
13,644
import tensorflow as tf self.k = 16 self.g_dim = 256 self.c = 10 self.vf_hidden_size = 128 # for value function network self.alpha = 0.5 # for build loss self.batch_processor = FeudalBatchProcessor(self.c) self.build_model() # build feudal policy model with tf.name_scope('local_grad'): grads = tf.gradients(self.loss, self.var_list) grads, _ = tf.clip_by_global_norm(grads, 40) with tf.name_scope('sync'): # worker和global的同步过程 with tf.name_scope('pull'): # 获取global参数,复制到local—net self.pull_params_op = tf.group(*[v1.assign(v2) for v1, v2 in zip(self.var_list, globalAC.var_list)])
tensorflow.name_scope
13,645
import tensorflow as tf max_iter=max_iter, model_type=model_type, opt=opt) self.rel_maxnorm_mult = rel_maxnorm_mult def _create_model(self, train_triples): # Count unique items to determine embedding matrix sizes entity_cnt = len(set(train_triples[:,0]).union(train_triples[:,2])) rel_cnt = len(set(train_triples[:,1])) init_sd = 1.0 / np.sqrt(self.embedding_size) # Embedding variables for all entities and relationship types entity_embedding_shape = [entity_cnt, self.embedding_size] # Relationship embeddings will be stored in flattened format to make # applying maxnorm constraints easier rel_embedding_shape = [rel_cnt, self.embedding_size * self.embedding_size] entity_init = tf.truncated_normal(entity_embedding_shape, stddev=init_sd) rel_init = tf.truncated_normal(rel_embedding_shape, stddev=init_sd) if self.maxnorm is not None: # Ensure maxnorm constraints are initially satisfied entity_init = dense_maxnorm(entity_init, self.maxnorm) rel_init = dense_maxnorm(rel_init, self.maxnorm) self.entity_embedding_vars = tf.Variable(entity_init) self.rel_embedding_vars = tf.Variable(rel_init) # Embedding layer for each (head, rel, tail) triple being fed in as input head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input) tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input) rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input) # Reshape rel_embed into square D x D matrices rel_embed_square = tf.reshape(rel_embed, (-1, self.embedding_size, self.embedding_size)) # Reshape head_embed and tail_embed to be suitable for the matrix multiplication
tensorflow.truncated_normal
13,646
import tensorflow as tf lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=self.H) for t in range(self.T): context, alpha = self._attention_layer(features, features_proj, h, reuse=(t!=0)) alpha_list.append(alpha) if self.selector: context, beta = self._selector(context, h, reuse=(t!=0)) with tf.variable_scope('lstm', reuse=(t!=0)): _, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x[:,t,:], context]), state=[c, h]) logits = self._decode_lstm(x[:,t,:], h, context, dropout=self.dropout, reuse=(t!=0)) loss += tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=captions_out[:, t]) * mask[:, t]) if self.alpha_c > 0: alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L) alphas_all = tf.reduce_sum(alphas, 1) # (N, L)
tensorflow.variable_scope
13,647
import tensorflow as tf 'weight_decay', 1e-5, 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'mse_weight', 1., 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'momentum', 0.9, 'The momentum for the MomentumOptimizer and RMSPropOptimizer.') tf.app.flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')#1e-3 tf.app.flags.DEFINE_float( 'end_learning_rate', 0.000001, 'The minimal end learning rate used by a polynomial decay learning rate.') tf.app.flags.DEFINE_float( 'warmup_learning_rate', 0.00001,
tensorflow.app.flags.DEFINE_float
13,648
import tensorflow as tf class Linear(object) : def __init__(self,name,input_dim,output_dim,stddev=0.02) : with tf.variable_scope(name) : self.w = tf.get_variable('w',[input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) return tf.matmul(tf.reshape(input_var,[-1,dims]),w) + b else : return tf.matmul(input_var,w)+b def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormLinear(object): def __init__(self,name,input_dim,output_dim,stddev=0.02,epsilon=1e-10) : with tf.variable_scope(name) : self.v = tf.get_variable('v',[input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[output_dim],
tensorflow.shape
13,649
import tensorflow as tf device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_train_defun(self): self._benchmark_eager_train( "eager_train", MockIterator, device_and_data_format(), defun=False) def benchmark_eager_train_datasets_with_defun(self): def make_iterator(tensors): with tf.device("/device:CPU:0"): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( "eager_train_dataset_with_defun", make_iterator, device_and_data_format(), defun=True) if __name__ == "__main__": tf.enable_eager_execution()
tensorflow.data.Dataset.from_tensors
13,650
import tensorflow as tf # pylint: enable=g-bad-import-order def _generate_synthetic_snli_data_batch(sequence_length, batch_size, vocab_size): """Generate a fake batch of SNLI data for testing.""" with tf.device("cpu:0"): labels = tf.random_uniform([batch_size], minval=1, maxval=4, dtype=tf.int64) prem = tf.random_uniform( (sequence_length, batch_size), maxval=vocab_size, dtype=tf.int64) prem_trans = tf.constant(np.array( [[3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2]] * batch_size, dtype=np.int64).T) hypo = tf.random_uniform(
tensorflow.random_uniform
13,651
import tensorflow as tf Args: xs: 4-D `tensor` [batch_size, height, width, channels], input Returns: a `float` decov loss """ with tf.name_scope(name): x = tf.reshape(xs, [int(xs.get_shape()[0]), -1]) m = tf.reduce_mean(x, 0, True) z = tf.expand_dims(x - m, 2) corr = tf.reduce_mean(tf.matmul(z, tf.transpose(z, perm=[0, 2, 1])), 0) corr_frob_sqr = tf.reduce_sum(tf.square(corr)) corr_diag_sqr = tf.reduce_sum(tf.square(tf.diag_part(corr))) loss = 0.5 * (corr_frob_sqr - corr_diag_sqr) return loss def center_loss(features, label, alpha, num_classes, name='center_loss'): """Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition" (http://ydwen.github.io/papers/WenECCV16.pdf)
tensorflow.transpose
13,652
from tensorflow.python.framework import ops Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `ignore_mask` is not `None` and its shape doesn't match `predictions`, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ default_name = _at_k_name('precision', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions, labels, ignore_mask, weights)) as scope: _, top_k_idx = nn.top_k(predictions, k) return _streaming_sparse_precision_at_k( top_k_idx=top_k_idx, labels=labels, k=k, class_id=class_id, ignore_mask=ignore_mask, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=scope)
tensorflow.python.framework.ops.name_scope
13,653
import tensorflow as tf pos_inputs_ = tf.nn.embedding_lookup(pos_embeddings, pos_inputs_) pos_inputs_ = tf.tile(tf.expand_dims(pos_inputs_, axis=0), [batch_size, 1, 1]) encoder_inputs_ = tf.concat([encoder_inputs_, pos_inputs_], axis=2) if other_inputs is not None: encoder_inputs_ = tf.concat([encoder_inputs_, other_inputs], axis=2) if encoder.use_dropout: noise_shape = [1, time_steps, 1] if encoder.pervasive_dropout else [batch_size, time_steps, 1] encoder_inputs_ = tf.nn.dropout(encoder_inputs_, keep_prob=encoder.word_keep_prob, noise_shape=noise_shape) size = tf.shape(encoder_inputs_)[2] noise_shape = [1, 1, size] if encoder.pervasive_dropout else [batch_size, time_steps, size] encoder_inputs_ = tf.nn.dropout(encoder_inputs_, keep_prob=encoder.embedding_keep_prob, noise_shape=noise_shape) if encoder.input_layers: for j, layer_size in enumerate(encoder.input_layers): if encoder.input_layer_activation is not None and encoder.input_layer_activation.lower() == 'relu': activation = tf.nn.relu else: activation = tf.tanh
tensorflow.shape
13,654
import tensorflow as tf raise NotImplementedError(nl_type) def update_params(self, kwargs): """Update the class attributes with kwargs.""" if kwargs is not None: for k, v in kwargs.iteritems(): setattr(self, k, v) def symmetric_weights(self, w, name): """Apply symmetric weight sharing.""" conv_w_t = tf.transpose(w, (2, 3, 0, 1)) conv_w_symm = 0.5 * (conv_w_t + tf.transpose(conv_w_t, (1, 0, 2, 3))) conv_w = tf.transpose(conv_w_symm, (2, 3, 0, 1), name=name) return conv_w def prepare_tensors(self): """ Prepare recurrent/forward weight matrices. (np.prod([h, w, k]) / 2) - k params in the surround filter """ # FEEDFORWARD AND FEEDBACK KERNELS lower_feats = self.in_k for idx, (higher_feats, ff_dhw, fb_dhw) in enumerate( zip(self.ff_conv_k, self.ff_conv_dhw,
tensorflow.transpose
13,655
import tensorflow as tf name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
tensorflow.FixedLenFeature
13,656
import tensorflow as tf padding=padding, kernel_initializer=init, name='tr_conv' + id, use_bias=use_bias) # Traditional U-Net def build_Unet_Arch(self, input_data, name="Unet_Arch"): self.base_number_of_features = 32 with tf.variable_scope(name): # Encoder definition o_c1 = self.general_conv2d(input_data, self.base_number_of_features, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_1') o_mp1 = tf.layers.max_pooling2d(o_c1, 2, 2, name = name + '_maxpooling_1') o_c2 = self.general_conv2d(o_mp1, self.base_number_of_features * 2, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_2') o_mp2 = tf.layers.max_pooling2d(o_c2, 2, 2, name = name + '_maxpooling_2') o_c3 = self.general_conv2d(o_mp2, self.base_number_of_features * 4, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_3') o_mp3 = tf.layers.max_pooling2d(o_c3, 2, 2, name = name + '_maxpooling_3') o_c4 = self.general_conv2d(o_mp3, self.base_number_of_features * 8, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_4') o_mp4 = tf.layers.max_pooling2d(o_c4, 2, 2, name = name + '_maxpooling_4') o_c5 = self.general_conv2d(o_mp4, self.base_number_of_features * 16, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_5') # Decoder definition o_d1 = self.general_deconv2d(o_c5, self.base_number_of_features * 8, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_1') o_me1 = tf.concat([o_d1, o_c4], 3) # Skip connection o_d2 = self.general_deconv2d(o_me1, self.base_number_of_features * 4, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_2') o_me2 = tf.concat([o_d2, o_c3], 3) # Skip connection o_d3 = self.general_deconv2d(o_me2, self.base_number_of_features * 2, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_3') o_me3 = tf.concat([o_d3, o_c2], 3) # Skip connection o_d4 = self.general_deconv2d(o_me3, self.base_number_of_features, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_4') o_me4 = tf.concat([o_d4, o_c1], 3) # Skip connection logits = tf.layers.conv2d(o_me4, self.args.num_classes, 1, 1, 'SAME', activation = None) prediction = tf.nn.softmax(logits, name = name + '_softmax')
tensorflow.layers.max_pooling2d
13,657
import tensorflow as tf else: var_list = None with tf.device('/cpu:0'): saver = tf.train.Saver(var_list=var_list, save_relative_paths=True) saver.restore(self.sess, checkpoint_path)
tensorflow.train.Saver
13,658
import tensorflow as tf reset: Whether to reset the datasets. Returns: data: a batch of data from either the train or test set. """ with datasets.unlocked: datasets.train = datasets.train.make_one_shot_iterator() datasets.test = datasets.test.make_one_shot_iterator() data = tf.cond( tf.equal(phase, 'train'), datasets.train.get_next, datasets.test.get_next) if not isinstance(data, dict): data = {'data': data} if 'length' not in data: example = data[list(data.keys())[0]] data['length'] = ( tf.zeros((tf.shape(example)[0],), tf.int32) + tf.shape(example)[1])
tensorflow.equal
13,659
import tensorflow as tf y_pow: int, to whcih the labels should be raised; useful if model diverge. e.g. y_pow=2 num_ratings: numbers of rater to used, typically num_classes of the model batch_size: batch_size of the training or validation ops eps: a float, prevents divide by zero name: Optional scope/name for op_scope. Returns: A tensor with the kappa loss. """ with tf.name_scope(name): labels = tf.to_float(labels) repeat_op = tf.to_float( tf.tile(tf.reshape(tf.range(0, num_ratings), [num_ratings, 1]), [1, num_ratings])) repeat_op_sq = tf.square((repeat_op - tf.transpose(repeat_op))) weights = repeat_op_sq / tf.to_float((num_ratings - 1)**2) pred_ = predictions**y_pow try: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [-1, 1])) except Exception: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [batch_size, 1]))
tensorflow.range
13,660
import tensorflow as tf with self.test_session() as session: @dynamic_batching.batch_fn def f(_): return tf.constant(1) output = f(tf.constant([1])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output) with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
tensorflow.train.Coordinator
13,661
import tensorflow as tf def _add_global_avg_pool(self, X, in_w, in_h, in_ch): X = tf.nn.relu(X)
tensorflow.nn.relu
13,662
import tensorflow as tf def valid_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) l2 = tf.matmul(l1, self.w2)+self.b2 l2=tf.nn.relu(l2) l3=tf.matmul(l2, self.w3)+self.b3 l3=tf.nn.relu(l3) out=tf.matmul(l3, self.w4)+self.b4 return out def softmax_loss(self,predicts,labels): predicts=tf.nn.softmax(predicts) labels=tf.one_hot(labels,classnum) loss=-tf.reduce_sum(labels*tf.log(predicts)) return loss def optimer(self,loss,lr=0.001): train_step=tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_step path=r'C:\JC\test\train_model.ckpt' image,label=getinputs(r'C:\JC\tfrecord\64_shuffle/train.tfrecords') test_image,test_label=getinputs(r'C:\JC\tfrecord\64_shuffle/test.tfrecords') valid_image,valid_label= getinputs(r'C:\JC\tfrecord\64_shuffle\validation.tfrecords') batch_image,batch_label=get_batch(image,label,trainnum,0)
tensorflow.one_hot
13,663
import tensorflow as tf expected_shape) self.assertItemsEqual(endpoints_shapes.keys(), explicit_padding_end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in explicit_padding_end_points) self.assertListEqual( explicit_padding_end_points[endpoint_name].get_shape().as_list(), expected_shape) def testOutputStride16BuildAndCheckAllEndPointsUptoConv2d_13(self): batch_size = 5 height, width = 224, 224 output_stride = 16 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise') _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise', use_explicit_padding=True) endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32], 'Conv2d_1_depthwise': [batch_size, 112, 112, 32], 'Conv2d_1_pointwise': [batch_size, 112, 112, 64], 'Conv2d_2_depthwise': [batch_size, 56, 56, 64], 'Conv2d_2_pointwise': [batch_size, 56, 56, 128],
tensorflow.random_uniform
13,664
import tensorflow as tf default_value=-1) vz = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string, value_dtype=tf.int64, default_value=-1) vx_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1)) vz_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1)) x_t = tf.gather(x, l) x_t_len = tf.strings.length(x_t) x_t = tf.string_split([x_t], delimiter='').values z_t = tf.gather(y, m) z_t_len = tf.strings.length(z_t) z_t = tf.string_split([z_t], delimiter='').values for i in tf.range(start=0, limit=x_t_len - self._p + 1, delta=1, dtype=None, name='range'): u = tf.string_join(x_t[i:i + self._p], '') vx_keys, r = tf.cond(
tensorflow.strings.length
13,665
import tensorflow as tf [self.timesteps], dtype=tf.float32))) if self.lesion_omega: setattr( self, 'omega_%s' % layer, tf.constant(0.)) if self.lesion_kappa: setattr( self, 'kappa_%s' % layer,
tensorflow.constant
13,666
import tensorflow as tf shape = py_utils.static_or_dynamic_shape(x) encode_params, decode_params = stage.get_params() encoded_x = stage.encode(x, encode_params) # Get all values out of TensorFlow as Python constants. This is a trivial # example of communication happening outside of TensorFlow. with self.session(graph=server_graph): x, decode_params, encoded_x, shape = self.evaluate_tf_py_list( [x, decode_params, encoded_x, shape]) client_graph = tf.Graph() with client_graph.as_default(): decoded_x = stage.decode(encoded_x, decode_params, shape=shape) with self.session(graph=client_graph): decoded_x = self.evaluate(decoded_x) return TestData(x, encoded_x, decoded_x) if is_adaptive_stage(stage): return _adaptive_one_to_many_encode_decode(state)
tensorflow.Graph
13,667
import tensorflow as tf logits=real_logits, labels=tf.ones_like(real_logits))) fake_logits = discriminator_fn(fake_data) if isinstance(fake_logits, (list, tuple)): fake_logits = fake_logits[0] fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits=fake_logits, labels=tf.zeros_like(fake_logits))) d_loss = real_loss + fake_loss if mode == "min_fake": g_loss = - fake_loss
tensorflow.zeros_like
13,668
from tensorflow.contrib import metrics as metrics_lib metrics[_MetricKeys.PRECISION_MEAN % threshold] = _streaming_with_threshold( metrics_lib.streaming_precision, threshold) # Recall for positive examples. metrics[_MetricKeys.RECALL_MEAN % threshold] = _streaming_with_threshold( metrics_lib.streaming_recall, threshold) return metrics # TODO(zakaria): support weights. def _targets_streaming_mean(unused_predictions, targets): return metrics_lib.streaming_mean(targets) def _predictions_streaming_mean(predictions, unused_targets): return metrics_lib.streaming_mean(predictions) def _streaming_with_threshold(streaming_metrics_fn, threshold): def _streaming_metrics(predictions, targets): return streaming_metrics_fn(predictions=math_ops.to_float(
tensorflow.contrib.metrics.streaming_mean
13,669
import tensorflow as tf degree_l = tf.convert_to_tensor(value=degree_l) order_m = tf.convert_to_tensor(value=order_m) x = tf.convert_to_tensor(value=x) pmm = _evaluate_legendre_polynomial_pmm_eval(order_m, x) return tf.where( tf.equal(degree_l, order_m), pmm, _evaluate_legendre_polynomial_branch(degree_l, order_m, x, pmm)) def _spherical_harmonics_normalization(l, m, var_type=tf.float64): l = tf.cast(l, dtype=var_type) m = tf.cast(m, dtype=var_type) numerator = (2.0 * l + 1.0) * factorial(l - tf.abs(m)) denominator = 4.0 * np.pi * factorial(l + tf.abs(m)) return tf.sqrt(numerator / denominator) def _evaluate_spherical_harmonics_branch(degree, order, theta, phi, sign_order, var_type=tf.float64): sqrt_2 = tf.constant(1.41421356237, dtype=var_type) order_float = tf.cast(order, dtype=var_type) tmp = sqrt_2 * _spherical_harmonics_normalization( degree, order, var_type) * evaluate_legendre_polynomial(
tensorflow.abs
13,670
import tensorflow as tf with tf.variable_scope("polyak_model", reuse=True, custom_getter=custom_getter): self.polyak_model = polyak_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps + 1, self.n_envs * (self.n_steps + 1), reuse=True, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): self.done_ph = tf.placeholder(tf.float32, [self.n_batch]) # dones self.reward_ph = tf.placeholder(tf.float32, [self.n_batch]) # rewards, not returns self.mu_ph = tf.placeholder(tf.float32, [self.n_batch, self.n_act]) # mu's self.action_ph = train_model.pdtype.sample_placeholder([self.n_batch]) self.learning_rate_ph = tf.placeholder(tf.float32, []) eps = 1e-6
tensorflow.placeholder
13,671
import tensorflow as tf # element when gathering L_flat into a lower triangular matrix L. nb_rows = tf.shape(L_flat)[0] zeros = tf.expand_dims(tf.tile(K.zeros((1,)), [nb_rows]), 1) try: # Old TF behavior. L_flat = tf.concat(1, [zeros, L_flat]) except TypeError: # New TF behavior L_flat = tf.concat([zeros, L_flat], 1)
tensorflow.concat
13,672
import tensorflow as tf if not self.lm_file: elmo_module = hub.Module("https://tfhub.dev/google/elmo/2") lm_embeddings = elmo_module( inputs={"tokens": tokens, "sequence_len": text_len}, signature="tokens", as_dict=True) word_emb = lm_embeddings["word_emb"] # [num_sentences, max_sentence_length, 512] lm_emb = tf.stack([tf.concat([word_emb, word_emb], -1), lm_embeddings["lstm_outputs1"], lm_embeddings["lstm_outputs2"]], -1) # [num_sentences, max_sentence_length, 1024, 3] lm_emb_size = util.shape(lm_emb, 2) lm_num_layers = util.shape(lm_emb, 3) with tf.variable_scope("lm_aggregation"): self.lm_weights = tf.nn.softmax(tf.get_variable("lm_scores", [lm_num_layers], initializer=tf.constant_initializer(0.0)))
tensorflow.concat
13,673
import tensorflow as tf # Overall connectivity and Dale's law matrices # ------------------------------------------------ # Recurrent Dale's law weight matrix: self.Dale_rec = tf.get_variable('Dale_rec', [N_rec, N_rec], initializer=tf.constant_initializer(self.dale_rec), trainable=False) # Output Dale's law weight matrix: self.Dale_out = tf.get_variable('Dale_out', [N_rec, N_rec], initializer=tf.constant_initializer(self.dale_out), trainable=False) # Connectivity weight matrices: self.input_Connectivity = tf.get_variable('input_Connectivity', [N_rec, N_in], initializer=tf.constant_initializer( self.input_connectivity_mask), trainable=False) self.rec_Connectivity = tf.get_variable('rec_Connectivity', [N_rec, N_rec], initializer=tf.constant_initializer( self.recurrent_connectivity_mask), trainable=False) self.output_Connectivity = tf.get_variable('output_Connectivity', [N_out, N_rec], initializer=tf.constant_initializer( self.output_connectivity_mask), trainable=False) # ------------------------------------------------ # Network loss
tensorflow.constant_initializer
13,674
import tensorflow as tf while global_step < FLAGS.train_step: steps_and_files = {} filenames = tf.gfile.ListDirectory(FLAGS.output_dir) for filename in filenames:
tensorflow.gfile.ListDirectory
13,675
import tensorflow as tf horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) horizon_pred1, horizon_pred2 = tf.split(horizon_pred, 2, axis=0) horizon_tgt1, horizon_tgt2 = tf.split(horizon_tgt, 2, axis=0) pred_flat1, pred_flat2 = tf.reshape(horizon_pred1, [-1, 1]), tf.reshape(horizon_pred2, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt1, [-1, 1]), tf.reshape(horizon_tgt2, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss) return final_loss, cstr_pct
tensorflow.cast
13,676
import tensorflow as tf output_t = linear([cell_output] + [context_t], options.gen_hidden_size, True) with tf.variable_scope('output_projection'): w = tf.get_variable('w', [options.gen_hidden_size, vocab.vocab_size+1], dtype=tf.float32) b = tf.get_variable('b', [vocab.vocab_size +1], dtype=tf.float32) # vocab_scores is the vocabulary distribution before applying softmax. # Each entry on the list corresponds to one decoder step vocab_score_t = tf.nn.xw_plus_b(output_t, w, b) # apply the linear layer
tensorflow.get_variable
13,677
from tensorflow.python.framework import ops # -- Register operations ------------------------------------------------------ bilateral_slice = _hdrnet.bilateral_slice bilateral_slice_apply = _hdrnet.bilateral_slice_apply # ----------- Register gradients ---------------------------------------------- @ops.RegisterGradient('BilateralSlice') def _bilateral_slice_grad(op, grad): grid_tensor = op.inputs[0] guide_tensor = op.inputs[1] return _hdrnet.bilateral_slice_grad(grid_tensor, guide_tensor, grad)
tensorflow.python.framework.ops.RegisterGradient
13,678
import tensorflow as tf # loss_i = loss_mod.get_loss(samples.state, samples.next_state, samples.action, ~samples.done & ~samples.timeout) # total_loss.append(loss_i.mean()) # total_loss = np.mean(total_loss) # print ('loaded model val loss:', total_loss) ##exit(0) ######################### debug ######################### slbo_n_stages = nslbo print (f"each task will do nslbo = {nslbo}") for param in model.parameters(): param.invalidate() all_task_parameter = [] while (not test and TASK_NUM < ITERS) or (test and TEST_TASK_NUM < ITERS): # first task or maxstep, update the model. Otherwise, revert the model logger.info('Sync model from lazymodel') tf.get_default_session().run(sync_model_from_lazymodel) taskres = {} if 'goal_velocity' not in taskres.keys(): taskres['goal_velocity'] = [] if not test and inittask == 'none': slbo_n_stages = nslbo elif not test and TASK_NUM == 0: slbo_n_stages = initnslbo elif not test and TASK_NUM > 0: slbo_n_stages = nslbo time_start = time.time() trpo_warmup = [] trpo_slbo = [] surprisal = []
tensorflow.get_default_session
13,679
import tensorflow as tf W = tf.get_variable('W', [state_size, input_size_y]) b = tf.get_variable('b', [input_size_y], initializer=tf.constant_initializer(0.0)) rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size]) predictions = tf.matmul(rnn_outputs, W) + b yy = tf.reshape(y, [-1, input_size_y]) #batch_size*num_steps when yo udefine a placeholder in Tensorflow, the shape of the input during the session should be the same as the shape of the plcae holder "Mean squared error loss" loss=tf.reduce_mean(tf.square(tf.reshape(predictions,[-1])-tf.reshape(yy,[-1]))) "Adding regularization" if lambda_l2_reg > 0 : cell_l2 = tf.reduce_sum([tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "Bias" in tf_var.name)]) Predict_l2 = tf.nn.l2_loss(W) #+ tf.nn.l2_loss(b) total_loss = tf.reduce_sum(loss + lambda_l2_reg* tf.reduce_sum(cell_l2+Predict_l2) )
tensorflow.reshape
13,680
import tensorflow as tf Returns: ids: the encoded integer ids. tokens: the encoded string. """ words = tf.sparse.to_dense(tf.strings.split([text]), default_value='')[0] num_words = tf.size(words) ids_ta = tf.TensorArray(tf.int32, 0, dynamic_size=True) def _WordsToIds(i, words, ids_ta): encoded_ids = self._EncodeToIds(BOW_STR + words[i]) ids_ta = ids_ta.scatter( tf.range(ids_ta.size(),
tensorflow.TensorArray
13,681
import tensorflow as tf w_c: [1,1, attention_vec_size] coverage: [batch_size, passage_len] ''' with variable_scope.variable_scope("Attention"): # Equation (11) in the paper state_features = linear(decoder_state, attention_vec_size, True) # [batch_size, attention_vec_size] state_features = tf.expand_dims(state_features, 1) # [batch_size, 1, attention_vec_size] all_features = encoder_features + state_features # [batch_size,passage_len,attention_vec_size] if use_coverage and coverage is not None: coverage_features = tf.expand_dims(coverage, axis=-1) * w_c # [batch_size, passage_len, attention_vec_size] all_features += coverage_features e = tf.reduce_sum(v * tf.tanh(all_features), axis=-1) # [batch_size, passage_len]
tensorflow.expand_dims
13,682
import tensorflow as tf x = (x - u) * tf.rsqrt(s + e) if g is not None and b is not None: x = x*g + b return x def norm(x, scope, axis=[-1]): with tf.variable_scope(scope): n_state = shape_list(x)[-1] g = tf.get_variable("g", [n_state], initializer=tf.constant_initializer(1)) b = tf.get_variable("b", [n_state], initializer=tf.constant_initializer(0)) return _norm(x, g, b, axis=axis)
tensorflow.variable_scope
13,683
import tensorflow as tf features=tf.parse_single_example(serialized_example, features={ 'label':tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string),
tensorflow.FixedLenFeature
13,684
import tensorflow as tf # inputs = tf.unstack(inputs, num=self.num_steps, axis=1) # outputs, state = tf.nn.static_rnn(cell, inputs, # initial_state=self._initial_state) outputs = [] with tf.variable_scope("RNN"): for time_step in range(self.num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state)
tensorflow.variable_scope
13,685
import tensorflow as tf facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer input_size = query.get_shape().as_list()[-1] # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tensorflow.random_normal
13,686
import tensorflow as tf def GetWordPred(o_): logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias) return tf.nn.softmax(logits) self.preds_by_word = tf.pack([GetWordPred(o_) for o_ in mats]) self.cs = self._mask / tf.reduce_sum(self._mask, 1, keep_dims=True) # The final prediction is the average of the predictions for each word # weighted by the individual confidence/utility scores. preds_weighted = tf.mul(tf.reshape(tf.transpose(self.cs), [-1, 1]), tf.reshape(self.preds_by_word, [-1, self._out_vocab_size])) preds_weighted_reshaped = tf.reshape(preds_weighted, self.preds_by_word.get_shape()) self.probs = tf.reduce_sum(preds_weighted_reshaped, 0) self._xent = _SafeXEnt(self.y, self.probs, class_weights=class_weights) class WordAvgModel(BaseModel): #formerly SimpleModel """A bag of word /predictions/.""" def __init__(self, out_vocab_size=None, batch_size=10, model_params=None, c2v=None, max_sequence_len=None, dropout_keep_prob=None, weights=None):
tensorflow.reduce_sum
13,687
import tensorflow as tf def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
tensorflow.variable_scope
13,688
import tensorflow as tf tfd.Exponential, tfd.Gamma, tfd.InverseGamma, tfd.Laplace, tfd.StudentT, tfd.Uniform, ] sample_shapes = [(), (10,), (10, 20, 30)] for cls in classes: for sample_shape in sample_shapes: param_shapes = cls.param_shapes(sample_shape) params = dict([(name, tf.random_normal(shape)) for name, shape in param_shapes.items()]) dist = cls(**params) self.assertAllEqual(sample_shape, self.evaluate( tf.shape(dist.sample()))) dist_copy = dist.copy() self.assertAllEqual(sample_shape, self.evaluate(tf.shape(dist_copy.sample()))) self.assertEqual(dist.parameters, dist_copy.parameters) def testCopyExtraArgs(self): # Note: we cannot easily test all distributions since each requires
tensorflow.random_normal
13,689
import tensorflow as tf """ loss = None with tf.name_scope(name, "click_softmax_cross_entropy",[output]): label_dis = labels*propensity_weights / tf.reduce_sum(labels*propensity_weights, 1, keep_dims=True) loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels*propensity_weights, 1) return tf.reduce_sum(loss) / tf.reduce_sum(labels*propensity_weights) def click_loglikelihood(self, labels, propensity,train_output, name=None):
tensorflow.reduce_sum
13,690
import tensorflow as tf beta = tf.train.polynomial_decay(beta_start, self.global_step,
tensorflow.train.polynomial_decay
13,691
import tensorflow as tf self.assertTrue(gfile.Exists(s4)) class SaveRestoreWithVariableNameMap(tf.test.TestCase): def testNonReshape(self): save_path = os.path.join(self.get_temp_dir(), "basics") with self.test_session() as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Save the initialized values in the file at "save_path" # Use a variable name map to set the saved tensor names
tensorflow.Variable
13,692
import tensorflow as tf # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu:
tensorflow.logging.info
13,693
import tensorflow as tf if with_hessian == True: #if true, it evaluates hess = hessian(grads, tvars) #Hessian matrix res = tf.subtract(an, Y) #residual error #---------------------------Initialize evaluation metrics---------------------------------------------------- e_len = len(epoch_sample) acc_train = [] #store train accuracy for each epoch acc_test = [] #store test accuracy for each epoch if actL == 'sigmoid': #accuracy score for binary class classification Yp = tf.greater(an , 0.5) accuracy = tf.reduce_mean(tf.cast(tf.equal(Yp, tf.equal(Y,1.0)), "float")) elif actL == 'esp' or actL == 'relu': #r2 score norm= tf.reduce_mean( tf.squared_difference(Y,tf.reduce_mean(Y)) ) accuracy = 1 - tf.divide( tf.reduce_mean(tf.squared_difference(an, Y)), norm) elif actL == 'softmax': #accuracy score for multiclass classification Yp = tf.sigmoid(betan*hn) correct = tf.equal(tf.argmax(Yp), tf.argmax(Y)) accuracy= tf.reduce_mean(tf.cast(correct, "float"))
tensorflow.equal
13,694
import tensorflow as tf with tf.name_scope(name, "AssignMovingAvg", [mean, cur_mean, decay]): with ops.colocate_with(mean): new_mean = tf.assign_sub( mean, tf.check_numerics( decay * (mean - cur_mean), "NaN in moving mean.")) with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]): with ops.colocate_with(var): new_var = tf.assign_sub( var, tf.check_numerics(decay * (var - cur_var), "NaN in moving variance.")) with tf.name_scope(name, "IncrementTime", [step]): with ops.colocate_with(step): new_step = tf.assign_add(step, 1.) used_var += 0. * new_mean * new_var * new_step used_var += epsilon return used_mean, used_var def convnet(input_, dim_in, dim_hid,
tensorflow.name_scope
13,695
import tensorflow as tf ## End new version if self._normalize_cols: logits_vec = logits_vec - tf.math.reduce_logsumexp( logits_vec, axis=0)[None] relabel_indices = tf.random.categorical(logits=logits_vec, num_samples=1) ### Metrics global_step = tf.compat.v1.train.get_or_create_global_step() orig_indices = tf.range( self._sample_batch_size, dtype=relabel_indices.dtype) with tf.name_scope("relabelling"): # How often are the originally commanded goals most optimal? opt_indices = tf.argmax(logits_vec, axis=1) orig_is_opt = opt_indices == orig_indices
tensorflow.compat.v1.train.get_or_create_global_step
13,696
import tensorflow as tf for output in sorted(outputs_to_scales_to_logits): scales_to_logits = outputs_to_scales_to_logits[output] logits = _resize_bilinear( scales_to_logits[MERGED_LOGITS_SCOPE], tf.shape(images)[1:3], scales_to_logits[MERGED_LOGITS_SCOPE].dtype) outputs_to_predictions[output].append( tf.expand_dims(tf.nn.softmax(logits), 4)) if add_flipped_images: scales_to_logits_reversed = ( outputs_to_scales_to_logits_reversed[output]) logits_reversed = _resize_bilinear( tf.reverse_v2(scales_to_logits_reversed[MERGED_LOGITS_SCOPE], [2]), tf.shape(images)[1:3], scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype) outputs_to_predictions[output].append( tf.expand_dims(tf.nn.softmax(logits_reversed), 4)) for output in sorted(outputs_to_predictions): predictions = outputs_to_predictions[output] # Compute average prediction across different scales and flipped images. predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4) outputs_to_predictions[output] = tf.argmax(predictions, 3, output_type=tf.dtypes.int32) outputs_to_predictions[output + PROB_SUFFIX] = tf.nn.softmax(predictions)
tensorflow.reverse_v2
13,697
import tensorflow as tf if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") filed_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps)
tensorflow.logging.info
13,698
import tensorflow as tf mnist_eager.train(model, optimizer, dataset, step_counter=tf.train.get_or_create_global_step())
tensorflow.train.get_or_create_global_step
13,699