seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf def add_forward_pass_and_gradients( self, host_images, host_labels, nclass, phase_train, device_num, input_data_type, data_type, input_nchan, use_synthetic_gpu_images, gpu_copy_stage_ops, gpu_compute_stage_ops, gpu_grad_stage_ops): """Add ops for forward-pass and gradient computations.""" if not use_synthetic_gpu_images: with tf.device(self.cpu_device): images_shape = host_images.get_shape() labels_shape = host_labels.get_shape() gpu_copy_stage = data_flow_ops.StagingArea( [tf.float32, tf.int32], shapes=[images_shape, labels_shape])
tensorflow.device
13,300
import tensorflow as tf trg_bucket_boundaries.append(minimal_multiple(trg_bucket_boundaries[-1] + 1, 8)) src_bucket_boundaries, trg_bucket_boundaries = dataset_utils.associated_bucket_boundaries( src_bucket_boundaries, trg_bucket_boundaries) src_bucket_boundaries = [x - num_extra_srctokens for x in src_bucket_boundaries] bucket_boundaries = { "feature": src_bucket_boundaries, "label": trg_bucket_boundaries } bucket_batch_sizes = dataset_utils.adjust_batch_size( batch_size, bucket_boundaries=bucket_boundaries if args["batch_by_tokens"] else None, boundaries_reduce_to_length_fn=lambda x: max(tf.nest.flatten(x)), num_replicas_in_sync=num_replicas_in_sync) if isinstance(bucket_batch_sizes, list): bucket_batch_sizes = [ int(maximum_lower_multiple(x // num_replicas_in_sync, 8) * num_replicas_in_sync) for x in bucket_batch_sizes] else: bucket_batch_sizes = int(maximum_lower_multiple( bucket_batch_sizes // num_replicas_in_sync, 8) * num_replicas_in_sync) return dataset_utils.batch_examples_by_token( dataset,
tensorflow.nest.flatten
13,301
import tensorflow as tf return input_fn def _decode_tfrecord(self, record): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, self._name_to_feature_config) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name, tensor in example.items(): if tensor.dtype == tf.int64: example[name] = tf.cast(tensor, tf.int32) else: example[name] = tensor return example
tensorflow.cast
13,302
import tensorflow as tf y_t = tf.reshape( tf.tile(tf.linspace(-1.0, 1.0, height), [width * depth]), [depth, width, height]) y_t = tf.transpose(y_t, [0, 2, 1]) sample_grid = tf.tile( tf.linspace(float(z_near), float(z_far), depth), [width * height]) z_t = tf.reshape(sample_grid, [height, width, depth]) z_t = tf.transpose(z_t, [2, 0, 1]) z_t = 1 / z_t d_t = 1 / z_t x_t /= z_t y_t /= z_t x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) d_t_flat = tf.reshape(d_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0) return grid def _transform(theta, input_dim, out_size, z_near, z_far): with tf.variable_scope('_transform'): num_batch = input_dim.get_shape().as_list()[0] num_channels = input_dim.get_shape().as_list()[4] theta = tf.reshape(theta, (-1, 4, 4)) theta = tf.cast(theta, 'float32')
tensorflow.reshape
13,303
import tensorflow as tf tgt1, tgt2 = tf.split(tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1)
tensorflow.where
13,304
import tensorflow as tf fnegtive_mask = tf.cast(negtive_mask, tf.float32) n_negtives = tf.reduce_sum(fnegtive_mask) n_neg_to_select = tf.cast(params['negative_ratio'] * n_positives, tf.int32) n_neg_to_select = tf.minimum(n_neg_to_select, tf.cast(n_negtives, tf.int32)) # hard negative mining for classification predictions_for_bg = tf.nn.softmax(cls_pred)[:, 0] prob_for_negtives = tf.where(negtive_mask, 0. - predictions_for_bg, # ignore all the positives 0. - tf.ones_like(predictions_for_bg)) topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=n_neg_to_select) selected_neg_mask = prob_for_negtives > topk_prob_for_bg[-1]
tensorflow.nn.softmax
13,305
import tensorflow as tf def __init__(self): self.weights = {} self.bn_epsilon = 1e-5 # Default used by Caffe def build(self, weights_path="open_nsfw-weights.npy", input_type=InputType.TENSOR): self.weights = np.load(weights_path, encoding="latin1").item() self.input_tensor = None if input_type == InputType.TENSOR: self.input = tf.placeholder(tf.float32, shape=[None, 224, 224, 3], name="input") self.input_tensor = self.input elif input_type == InputType.BASE64_JPEG: from image_utils import load_base64_tensor self.input = tf.placeholder(tf.string, shape=(None,), name="input") self.input_tensor = load_base64_tensor(self.input) else: raise ValueError("invalid input type '{}'".format(input_type))
tensorflow.placeholder
13,306
import tensorflow as tf @registry.register_model class FeedForwardCnnSmallCategoricalPolicyNew(PolicyBase): """Small cnn network with categorical output.""" def body(self, features): observations = features["inputs"] x = tf.transpose(observations, [0, 2, 3, 1, 4]) x_shape = common_layers.shape_list(x) x = tf.reshape(x, x_shape[:-2] + [-1]) dropout = getattr(self.hparams, "dropout_ppo", 0.0) with tf.variable_scope("feed_forward_cnn_small"): x = tf.cast(x, tf.float32) / 255.0 x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 32, (4, 4), strides=(2, 2), name="conv1", activation=common_layers.belu, padding="SAME") x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 64, (4, 4), strides=(2, 2), name="conv2", activation=common_layers.belu, padding="SAME") x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d(
tensorflow.cast
13,307
import tensorflow.contrib.rnn as rnn model.add(keras.layers.Dense(1)) model.compile(loss = 'mean_squared_error', optimizer = 'adam', metrics = ['mae', 'mape']) # mean absolute [percentage] error return keras.estimator.model_to_estimator(model, model_dir=output_dir) # Create the inference model def simple_rnn(features, labels, mode): # 0. Reformat input shape to become a sequence x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1) # 1. Configure the RNN lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0) outputs, _ = rnn.static_rnn(lstm_cell, x, dtype = tf.float32) # Slice to keep only the last cell of the RNN outputs = outputs[-1] #print('last outputs={}'.format(outputs)) # Output is result of linear activation of last layer of RNN weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS])) bias = tf.Variable(tf.random_normal([N_OUTPUTS])) predictions = tf.matmul(outputs, weight) + bias # 2. Loss function, training/eval ops if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
tensorflow.contrib.rnn.static_rnn
13,308
import tensorflow as tf mask = mask[cutout_size: cutout_size + im_height, cutout_size: cutout_size + im_width] mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3)) image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image)) return image def _add_drop_path(self, X, keep_prob): with tf.variable_scope('drop_path'): batch_size = tf.shape(X)[0] noise_shape = (batch_size, 1, 1, 1) random_tensor = keep_prob + tf.random_uniform(noise_shape, dtype=tf.float32) binary_tensor = tf.floor(random_tensor) X = (X / keep_prob) * binary_tensor return X def _do_conv(self, X, w, h, in_ch, out_ch, filter_size=1, no_relu=False, no_reg=False, is_train=False): W = self._make_var('W', (filter_size, filter_size, in_ch, out_ch), no_reg=no_reg) if not no_relu: X = tf.nn.relu(X) X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME')
tensorflow.random_uniform
13,309
from tensorflow.contrib.tensorboard.plugins import projector self.embedding_assign = self.embedding_test.assign(self.embedding_test_ph) self.embedding_saver = tf.train.Saver(var_list=[self.embedding_test]) config = projector.ProjectorConfig() embedding = config.embeddings.add() embedding.tensor_name = self.embedding_test.name embedding.sprite.image_path = './sprite.png' embedding.sprite.single_image_dim.extend([80, 80]) embedding.metadata_path = './metadata.tsv' projector.visualize_embeddings(self.summary_writer, config) sess.run(tf.variables_initializer([self.embedding_test], name='init_embeddings')) # build sprite image ut.images_to_sprite(self.test_set, path=os.path.join(FLAGS.logdir, 'sprite.png')) ut.generate_tsv(len(self.test_set), tsv_path) def _add_loss_summary(self, name, var, collection='train'): if var is not None:
tensorflow.contrib.tensorboard.plugins.projector.visualize_embeddings
13,310
import tensorflow as tf loss = weights * losses_utils.weighted_surrogate_loss( labels, logits + biases, surrogate_type=surrogate_type, positive_weights=1.0 + lambdas * (1.0 - precision_values), negative_weights=lambdas * precision_values) maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0 maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype) lambda_term = lambdas * (1.0 - precision_values) * label_priors * maybe_log2 per_anchor_loss = loss - lambda_term per_label_loss = delta * tf.reduce_sum(per_anchor_loss, 2) # Normalize the AUC such that a perfect score function will have AUC 1.0. # Because precision_range is discretized into num_anchors + 1 intervals # but only num_anchors terms are included in the Riemann sum, the
tensorflow.cast
13,311
import tensorflow as tf """Turn x_bit representing numbers bitwise (lower-endian) to int tensor. Args: x_bit: Tensor containing numbers in a particular base to be converted to int. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Integer representation of this number. """ x_l = tf.stop_gradient(tf.to_int32(tf.reshape(x_bit, [-1, num_bits]))) x_labels = [] for i in range(num_bits): x_labels.append(x_l[:, i] * tf.to_int32(base)**tf.to_int32(i)) res = sum(x_labels) return tf.to_int32(tf.reshape(res, common_layers.shape_list(x_bit)[:-1])) def int_to_bit(self, x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base.
tensorflow.to_int32
13,312
import tensorflow as tf masked_lm_log_probs = tf.reshape( masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]] ) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32 ) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights, ) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights )
tensorflow.metrics.accuracy
13,313
import tensorflow as tf ) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): # predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) # ones=tf.get_variable('ones',shape=logits.shape,initializer=tf.ones_initializer) # zeros=tf.get_variable('zeros',shape=logits.shape,initializer=tf.zeros_initializer) predictions=tf.where(logits>=0,tf.ones(tf.shape(logits)),tf.zeros(tf.shape(logits))) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.estimator.EstimatorSpec( mode=mode,
tensorflow.metrics.mean
13,314
import tensorflow as tf if ent_coef_loss is not None: with tf.control_dependencies([train_values_op]):
tensorflow.control_dependencies
13,315
import tensorflow as tf def hparams(self, defaults, unused_model_hparams): (super(QuestionAndContext2TextProblem, self) .hparams(defaults, unused_model_hparams)) p = defaults source_vocab_size = self._encoders["context"].vocab_size p.input_modality["context"] = (registry.Modalities.SYMBOL, source_vocab_size) if self.packed_length: raise NotImplementedError("QuestionAndContext2Text does not " "support packed_length") def example_reading_spec(self): data_fields, data_items_to_decoders = (super(QuestionAndContext2TextProblem, self) .example_reading_spec()) data_fields["context"] = tf.VarLenFeature(tf.int64) return (data_fields, data_items_to_decoders) class Text2SelfProblem(Text2TextProblem): """Language modeling problems base class. See Text2TextProblem for subclass interface. """ def generate_samples(self, data_dir, tmp_dir, dataset_split): """Generate samples of text. Args: data_dir: final data directory. Typically only used in this method to copy
tensorflow.VarLenFeature
13,316
import tensorflow as tf head_embed_row = tf.expand_dims(head_embed, 1) # embeddings as row vectors tail_embed_col = tf.expand_dims(tail_embed, 2) # embeddings as column vectors head_rel_mult = tf.batch_matmul(head_embed_row, rel_embed_square) # Output needs a squeeze into a 1d vector
tensorflow.batch_matmul
13,317
import tensorflow as tf self.observations_ph = self.policy_tf.obs_ph # Normalized observation for pixels self.processed_obs_ph = self.policy_tf.processed_obs self.next_observations_ph = self.target_policy.obs_ph self.processed_next_obs_ph = self.target_policy.processed_obs self.action_target = self.target_policy.action_ph self.terminals_ph = tf.placeholder(tf.float32, shape=(None, 1), name='terminals') self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.is_demo_ph = tf.placeholder(tf.float32, shape=(None, 1), name='is_demonstrations') self.weight_ph = tf.placeholder(tf.float32, shape=(None, 1), name='importance_weight') self.actions_ph = tf.placeholder(tf.float32, shape=(None,) + self.action_space.shape, name='actions') self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph") if self.n_step: self.next_observations_ph_n = self.target_policy.obs_ph self.processed_next_obs_ph_n = self.target_policy.processed_obs self.rewards_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_rewards') self.terminals_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_terminals')
tensorflow.placeholder
13,318
import tensorflow as tf else: out = tf.nn.max_pool3d(bottom, ksize=[1,1, FLAGS.pool_kernel, FLAGS.pool_kernel,1], strides=[1,1,FLAGS.pool_stride,FLAGS.pool_stride,1], padding='VALID') shape = out.get_shape() print('pool{}'.format(l + 1)) print('\t{} --> {}'.format(bottom.name, out.name)) print('\t{} --> {}'.format(bottom.get_shape(), out.get_shape())) with tf.variable_scope('scale'): bottom = out if FLAGS.pm[l + 1] == FLAGS.pm[l]: kernel_size = 1 # useless 1x1 pooling elif int(FLAGS.pm[l + 1]) < int(FLAGS.pm[l]): num_scales_prev = int(FLAGS.pm[l])
tensorflow.variable_scope
13,319
import tensorflow as tf self.g = tf.get_variable('g',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) input_var = tf.reshape(input_var,[-1,dims]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
tensorflow.reshape
13,320
import tensorflow as tf self.scope = scope def __call__(self,input_var,is_training,**xargs) : with tf.variable_scope(self.scope) : return tf.layers.batch_normalization( input_var,
tensorflow.variable_scope
13,321
import tensorflow as tf ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # 同上 # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu,nameScope="layerTest1") # add output layer prediction = add_layer(l1, 10, 1, activation_function=None,nameScope="layerTest2") sess = tf.Session() # 上面的wtih或者是name都是可选的,可以选择添加,也可以选择不添加,but下面的这一行是一定要写的。 # 这个表明了 在当前的目录下面创建以恶搞logs的文件家,然后把图的信息保存进去 # 这样运行完这段代码之后,就会有一个logs的文件夹被创建 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: # tensorflow version < 0.12 writer = tf.train.SummaryWriter('logs/', sess.graph) else: # tensorflow version >= 0.12 writer = tf.summary.FileWriter("logs/", sess.graph) if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init)
tensorflow.__version__.split
13,322
import tensorflow as tf test_dir = self._TestDir("slice_saver") filename = os.path.join(test_dir, "metafile") with self.test_session(): v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # The names are different and will work. slice_saver = tf.train.Saver({"first": v1, "second": v2}) tf.initialize_all_variables().run() # Exports to meta_graph meta_graph_def = slice_saver.export_meta_graph(filename) with tf.Graph().as_default(): # Restores from MetaGraphDef. new_saver = tf.train.import_meta_graph(filename) # Generates a new MetaGraphDef. new_meta_graph_def = new_saver.export_meta_graph() # It should be the same as the original. self.assertProtoEquals(meta_graph_def, new_meta_graph_def) def _testGraphExtensionSave(self): test_dir = self._TestDir("graph_extension") filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") with self.test_session(graph=tf.Graph()) as sess:
tensorflow.Graph
13,323
import tensorflow as tf with tf.variable_scope(scope): input_dims = input_data.get_shape().as_list() if len(input_dims) == 4: _, input_h, input_w, num_channels = input_dims in_dim = input_h * input_w * num_channels flat_input = tf.reshape(input_data, [-1, in_dim]) else: in_dim = input_dims[-1] flat_input = input_data if initial_value is None:
tensorflow.reshape
13,324
import tensorflow as tf h_params = np.apply_along_axis( gaussianization.compute_tukey_hh_params, 0, l_skewness_and_kurtosis) hh_l_mean, hh_l_scale = gaussianization.tukey_hh_l_mean_and_scale(h_params) scale = np.true_divide(accumulator.l2, hh_l_scale, where=valid_scale, out=np.ones_like(accumulator.l2)) loc = accumulator.l1 - scale * hh_l_mean hl = h_params[0, ...] hr = h_params[1, ...] return [self._output_numpy_dtype(x) for x in [loc, scale, hl, hr]] def output_tensor_infos(self): # The output is (loc, scale, hl, hr). return [ analyzer_nodes.TensorInfo( tf.as_dtype(self._output_numpy_dtype), self._output_shape, None) ] * 4 @property def accumulator_coder(self): # TODO(b/170510451): Re-enable caching for this Combiner. return None def _combine_accumulators(self, a, b): """Combines two accumulators. Args: a: A _LMomentsAccumulator. b: A _LMomentsAccumulator.
tensorflow.as_dtype
13,325
import tensorflow as tf self.block3_4 = self.res_block_3_layers(self.block3_3, [256, 256, 1024], "res4d")# 14*14 self.block3_5 = self.res_block_3_layers(self.block3_4, [256, 256, 1024], "res4e")# 14*14 self.block3_6 = self.res_block_3_layers(self.block3_5, [256, 256, 1024], "res4f")# 14*14 #[None 7 7 512] self.pool4 = self.max_pool(self.block3_6, 2, 2, "pool4")# 14*14 self.block4_1 = self.res_block_3_layers(self.pool4, [512, 512, 2048], "res5a", True)# 7*7 self.block4_2 = self.res_block_3_layers(self.block4_1, [512, 512, 2048], "res5b")# 7*7 self.block4_3 = self.res_block_3_layers(self.block4_2, [512, 512, 2048], "res5c")# 7*7 # upsample layer begins self.deconv_1 = self.deconv_bn_relu(self.block4_3, name = 'deconv_1',kernel_size = 3, output_channels = 1024, initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 14*14 self.deconv_2 = self.deconv_bn_relu(self.deconv_1, name = 'deconv_2',kernel_size = 3, output_channels = 512, initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 28*28 self.deconv_3 = self.deconv_bn_relu(self.deconv_2, name = 'deconv_3',kernel_size = 3, output_channels = 256, initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 56*56 self.deconv_4 = self.deconv_bn_relu(self.deconv_3, name = 'deconv_4',kernel_size = 3, output_channels = 128, initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 112*112 self.deconv_5 = self.deconv_bn_relu(self.deconv_4, name = 'deconv_5',kernel_size = 3, output_channels = 64, initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 224*224 # self.final_layer = self.conv_layer(bottom = self.deconv_5, kernal_size = 1, in_channels = 64, out_channels = 3, stride = 1, name = 'final_layer') self.final_layer = self.conv_bn_relu(bottom = self.deconv_5, name = 'final_layer', kernel_size = 1, output_channels = 3, initializer =tf.contrib.layers.variance_scaling_initializer(), bn = False, training = self.is_training, relu=False) # self.pool5 = self.avg_pool(self.block4_3, 7, 1, "pool5") #self.fc0 = self.fc_layer(self.pool5, 2048, 1024, "fc0")
tensorflow.contrib.layers.variance_scaling_initializer
13,326
import tensorflow as tf if self.config.fix_pretrained_vector: dc = self.char_mat.get_shape()[-1] with tf.variable_scope("Model_Encoder_Layer"): inputs = tf.concat(self.attention_outputs, axis=-1) self.enc = [conv(inputs, d, name="input_projection")] for i in range(3):
tensorflow.concat
13,327
import tensorflow as tf def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
tensorflow.array_ops.transpose
13,328
from tensorflow.core.protobuf import queue_runner_pb2 tf.initialize_all_variables() # Creates a saver. save = tf.train.Saver({"v0": v0}) # Adds a set of collections. tf.add_to_collection("int_collection", 3) tf.add_to_collection("float_collection", 3.5) tf.add_to_collection("string_collection", "hello") tf.add_to_collection("variable_collection", v0) # Add QueueRunners. tf.train.add_queue_runner(qr) # Adds user_defined proto in three formats: string, bytes and Any. queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue") tf.add_to_collection("user_defined_string_collection", str(queue_runner)) tf.add_to_collection("user_defined_bytes_collection", queue_runner.SerializeToString()) any_buf = Any() any_buf.Pack(queue_runner) tf.add_to_collection("user_defined_any_collection", any_buf) # Generates MetaGraphDef. meta_graph_def = save.export_meta_graph(filename) self.assertTrue(meta_graph_def.HasField("saver_def"))
tensorflow.core.protobuf.queue_runner_pb2.QueueRunnerDef
13,329
import tensorflow as tf for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = tf.identity(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name=name)
tensorflow.nn.bias_add
13,330
import tensorflow as tf # Create summary writer self.summary_writer = tf.summary.FileWriter(self.args.summary_dir, self.sess.graph)
tensorflow.summary.FileWriter
13,331
import tensorflow as tf # additional configs required for using TPUs tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu) tpu_config = tf.contrib.tpu.TPUConfig( num_shards=8, # using Cloud TPU v2-8
tensorflow.contrib.tpu.TPUConfig
13,332
import tensorflow as tf with argscope([Conv2D, FullyConnected], nl=tf.nn.relu): with tf.variable_scope('STN1'): sampled1 = get_stn(image) with tf.variable_scope('STN2'): sampled2 = get_stn(image) # For visualization in tensorboard with tf.name_scope('visualization'): padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]]) padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]]) img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1) # b x 2h x w transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1) transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1) stacked = tf.concat([img_orig, transform1, transform2], 2, 'viz') tf.summary.image('visualize', tf.expand_dims(stacked, -1), max_outputs=30) sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat') logits = (LinearWrap(sampled) .FullyConnected('fc1', out_dim=256, nl=tf.nn.relu) .FullyConnected('fc2', out_dim=128, nl=tf.nn.relu) .FullyConnected('fct', out_dim=19, nl=tf.identity)()) tf.nn.softmax(logits, name='prob')
tensorflow.concat
13,333
import tensorflow as tf train=False, validation=FLAGS.validation, shuffle=True) def placeholder_like(x, name=None): return tf.placeholder(shape=x.shape, dtype=tf.float32, name=name) def random_sphere(shape): n = tf.random_normal(shape=shape, dtype=tf.float32) n = tf.reshape(n, shape=(int(shape[0]), -1)) n = tf.nn.l2_normalize(n, dim=1) n = tf.reshape(n, shape) return n def random_sphere_numpy(shape): n = np.random.normal(size=shape) proj_shape = tuple([n.shape[0]] + [1 for _ in range(len(shape) - 1)]) return n / np.linalg.norm(n.reshape((n.shape[0], -1)), axis=1).reshape(proj_shape) print(ul_images.shape)
tensorflow.nn.l2_normalize
13,334
import tensorflow as tf c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def _ln(x, g, b, e=1e-5, axes=[1]): u, s = tf.nn.moments(x, axes=axes, keep_dims=True)
tensorflow.tanh
13,335
import tensorflow as tf status2 = False if status2: a = 1 values = interpolated inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, 0].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, 0]) values = tf.math.sign(tf.nn.relu(interpolated + self.tol)) inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, 1].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, 1]) values = sdf_values inter = tf.reshape(values, [self.resolution, self.resolution,
tensorflow.nn.relu
13,336
from tensorflow.contrib.framework import deprecated_args with ops.control_dependencies([true_positives_update_op, false_positives_update_op]): update_op = compute_precision('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, precision) if updates_collections: ops.add_to_collections(updates_collections, update_op) return precision, update_op @deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask') def streaming_recall(predictions, labels, ignore_mask=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall of the predictions with respect to the labels. The `streaming_recall` function creates two local variables, `true_positives` and `false_negatives`, that are used to compute the recall. This value is ultimately returned as `recall`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `recall`. `update_op`
tensorflow.contrib.framework.deprecated_args
13,337
import tensorflow as tf constructing a BidirectionalLanguageModel. ''' with open(options_file, 'r') as fin: options = json.load(fin) max_word_length = options['char_cnn']['max_characters_per_token'] vocab = UnicodeCharsVocabulary(vocab_file, max_word_length) batcher = Batcher(vocab_file, max_word_length) ids_placeholder = tf.placeholder('int32', shape=(None, None, max_word_length) ) model = BidirectionalLanguageModel(options_file, weight_file) embedding_op = model(ids_placeholder)['token_embeddings'] n_tokens = vocab.size embed_dim = int(embedding_op.shape[2])
tensorflow.placeholder
13,338
import tensorflow as tf :return [Tensor] [N, H', W', C]. Convolution results. """ blk_shape = tf.shape(blk_indices) blk_indices_ = tf.reshape(blk_indices, [-1, 3]) ksize = tf.shape(w)
tensorflow.reshape
13,339
import tensorflow as tf class CovCopyAttenGen: def __init__(self, placeholders, options, vocab): self.options = options self.vocab = vocab self.cell = tf.contrib.rnn.LSTMCell( options.gen_hidden_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113), state_is_tuple=True) self.placeholders = placeholders with tf.variable_scope("embedding"), tf.device('/cpu:0'): self.embedding = tf.get_variable('word_embedding', trainable=(options.fix_word_vec==False), initializer=tf.constant(self.vocab.word_vecs), dtype=tf.float32)
tensorflow.random_uniform_initializer
13,340
from tensorflow.python.platform import gfile s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertEqual(0, len(gfile.Glob(s1))) self.assertFalse(gfile.Exists(save._MetaGraphFilename(s1))) self.assertEqual(2, len(gfile.Glob(s2)))
tensorflow.python.platform.gfile.Glob
13,341
import tensorflow as tf [rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors], [tf.float32, tf.float32]) rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return rois, rpn_scores def _crop_pool_layer(self, bottom, rois, name): with tf.variable_scope(name): # tf.squeeze()返回一个张量,这个张量是将原始input中所有维度中为1的那些维都删掉的结果 batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1]) # Get the normalized coordinates of bboxes bottom_shape = tf.shape(bottom) height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0]) width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0]) # rois除以h,w就得到了rois在特征图上的位置 x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height # Won't be backpropagated to rois anyway, but to save time bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1)) # 'roi_pooling_size', 7 pre_pool_size = cfg.FLAGS.roi_pooling_size * 2 # 把rois对于的特征图上的部分crop出来,然后resize打破14*14的大小 crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops") return slim.max_pool2d(crops, [2, 2], padding='SAME')
tensorflow.to_float
13,342
import tensorflow as tf # # pyram_3x3_4 = self.conv('_atr_3x3_3', net, depth/2, size=3, stride=1, padding="SAME", dilation=rate[2]) # net = tf.concat((pyram_1x1_0, pyram_3x3_1, pyram_3x3_2, pyram_3x3_3), axis=3, name="concat") # net = self.conv('_1x1_output', net, depth, size=1, stride=1, padding="SAME") return net with tf.variable_scope('discriminator') as scope: if reuse: scope.reuse_variables() print('D in:', X.get_shape().as_list()) rate = [2, 3, 4] X = atrous_convs(X, "d_atrous_0", rate = rate, depth=256, reuse=reuse)
tensorflow.variable_scope
13,343
import tensorflow as tf def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0))
tensorflow.constant_initializer
13,344
import tensorflow as tf src_loss = get_loss(src_logits, inst_weights, src_one_hot_labels) dst_loss = get_loss(dst_logits, 1., finetune_one_hot_labels) l2_loss = [] for v in tf.trainable_variables(): if 'batch_normalization' not in v.name and 'rl_controller' not in v.name: l2_loss.append(tf.nn.l2_loss(v)) l2_loss = FLAGS.dst_weight_decay * tf.add_n(l2_loss) enable_pretrain = tf.cast( tf.greater_equal(global_step, FLAGS.first_pretrain_steps), tf.float32) loss = src_loss * tf.stop_gradient(loss_weights) * enable_pretrain loss += dst_loss + l2_loss return tf.identity(loss), src_loss, dst_loss def train_model_fn(features, labels, mode, params): # pylint: disable=unused-argument """Defines the model function.""" target_num_classes = FLAGS.target_num_classes global_step = tf.train.get_global_step() src_features, src_labels = features['src'], tf.cast(labels['src'], tf.int64) finetune_features = features['finetune'] target_features = features['target'] num_classes = FLAGS.src_num_classes
tensorflow.identity
13,345
import tensorflow as tf self.EPOCHS = 8 self.EPSILON = 0.2 self.EPS_LEN = 100000 # GPU setup os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu}) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Placeholders self.sess = tf.Session(config=config) self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0] self.a_bound = (env.action_space.high - env.action_space.low) / 2 self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action') self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state') self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage') self.rewards = tf.placeholder(tf.float32, [None, 1], 'discounted_r') # Dateset with experiennce replay self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions,
tensorflow.Session
13,346
import tensorflow as tf def testPostProcessImageTrainMode(self, likelihood, num_mixtures, depth): batch = 1 rows = 8 cols = 24 hparams = tf.contrib.training.HParams( hidden_size=2, likelihood=likelihood, mode=tf.estimator.ModeKeys.TRAIN, num_mixtures=num_mixtures, ) inputs = tf.random_uniform([batch, rows, cols, hparams.hidden_size], minval=-1., maxval=1.) outputs = common_image_attention.postprocess_image( inputs, rows, cols, hparams) self.assertEqual(outputs.shape, (batch, rows, cols, depth)) @parameterized.parameters( (common_image_attention.DistributionType.DMOL, 5, 50), (common_image_attention.DistributionType.CAT, None, 256), )
tensorflow.random_uniform
13,347
import tensorflow as tf test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum) test_inf=work.test_inference(test_image_batch) test_labels=tf.one_hot(test_label_batch,classnum) test_pre = tf.reshape(test_inf, [testnum, classnum]) correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) test_pre = tf.argmax(test_pre, 1) test_true = tf.argmax(test_labels, 1) valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum)
tensorflow.argmax
13,348
import tensorflow as tf pred_annotation, logits = inference(image, keep_probability) tf.summary.image("input_image", image, max_outputs=2)
tensorflow.summary.image
13,349
import tensorflow as tf Returns: A tf.data.Dataset. """ if args is None: args = self._args else: args = deep_merge_dict(self._args, args, local_overwrite=False) eos = tf.constant(self._multilingual_dp.meta["eos_id"], dtype=tf.int64) int_zero = tf.zeros([], dtype=tf.int64) dataset = ds.build(map_func=self.get_data_preprocess_fn(mode, ds.status, args), map_output_dtypes=self.inputs_signature(mode)[0], auto_shard=(mode == compat.ModeKeys.TRAIN), shuffle=(mode == compat.ModeKeys.TRAIN)) if mode == compat.ModeKeys.INFER: logging.info("Creating test dataset.")
tensorflow.zeros
13,350
import tensorflow as tf dtype = initial_learning_rate.dtype maximal_learning_rate = tf.cast(self.maximal_learning_rate, dtype) step_size = tf.cast(self.step_size, dtype) cycle = tf.floor(1 + step / (2 * step_size)) x = tf.abs(step / step_size - 2 * cycle + 1)
tensorflow.floor
13,351
import tensorflow as tf return Y def fwd_gradients_0(self, U, x): g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0] return tf.gradients(g, self.dummy_x0_tf)[0] def fwd_gradients_1(self, U, x): g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0] return tf.gradients(g, self.dummy_x1_tf)[0] def net_U0(self, x): lambda_1 = self.lambda_1 lambda_2 = tf.exp(self.lambda_2) U = self.neural_net(x, self.weights, self.biases) U_x = self.fwd_gradients_0(U, x) U_xx = self.fwd_gradients_0(U_x, x) U_xxx = self.fwd_gradients_0(U_xx, x) F = -lambda_1*U*U_x - lambda_2*U_xxx U0 = U - self.dt*tf.matmul(F, self.IRK_alpha.T) return U0 def net_U1(self, x): lambda_1 = self.lambda_1 lambda_2 = tf.exp(self.lambda_2)
tensorflow.exp
13,352
import tensorflow as tf return e / tf.clip_by_value(tf.reduce_sum(e, axis=dim, keep_dims=True), 10e-37, 10e+37) def sequence_loss(logits, targets, weights, average_across_timesteps=False, average_across_batch=True, rewards=None): batch_size = tf.shape(targets)[0] time_steps = tf.shape(targets)[1] logits_ = tf.reshape(logits, tf.stack([time_steps * batch_size, logits.get_shape()[2].value])) targets_ = tf.reshape(targets, tf.stack([time_steps * batch_size])) crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_, labels=targets_) crossent = tf.reshape(crossent, tf.stack([batch_size, time_steps])) if rewards is not None: crossent *= tf.stop_gradient(rewards) log_perp = tf.reduce_sum(crossent * weights, axis=1) if average_across_timesteps: total_size = tf.reduce_sum(weights, axis=1) total_size += 1e-12 # just to avoid division by 0 for all-0 weights
tensorflow.nn.sparse_softmax_cross_entropy_with_logits
13,353
import tensorflow as tf # nwords = tf.feature_column.input_layer({'words_len': raw_nwords}, params['words_len_feature_columns']) # nwords = tf.reshape(nwords, [-1]) # nwords = tf.to_int32(nwords) # words = features['words'] # words = tf.convert_to_tensor(words) # # nwords = features['words_len'] # nwords = tf.convert_to_tensor(nwords) nwords = tf.identity(self.features["words_len"], name="input_words_len") # get tag info # with Path(self.params['tags']).open() as f: indices = [ idx for idx, tag in enumerate(self.params["tags_data"]) if tag.strip() != "O" ] num_tags = len(indices) + 1
tensorflow.identity
13,354
import tensorflow as tf self.model_W = tf.get_variable("{}_W".format(name), initializer=kernel_initializer([n_in, n_out])) # variational parameters self.model_b = tf.get_variable("{}_b".format(name), initializer=tf.zeros([n_out]))
tensorflow.zeros
13,355
import tensorflow as tf # reconstructions with tf.name_scope('decodings'):
tensorflow.name_scope
13,356
import tensorflow as tf outputs = [ f(tf.constant([[1, 3]]), tf.constant([2])), f(tf.constant([[1, 3]]), tf.constant([2]))
tensorflow.constant
13,357
import tensorflow as tf with self.assertRaisesRegexp(ValueError, "same name: v1"): tf.train.Saver([v0, v1, v2]) # The names are different and will work. tf.train.Saver({"vee1": v1, "other": [v2]}) def testBasicsWithListOfVariables(self): save_path = os.path.join(self.get_temp_dir(), "basics_with_list") with self.test_session(graph=tf.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver([v0, v1]) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types))
tensorflow.Variable
13,358
import tensorflow as tf outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=is_training)) return outputs class Model: def __init__(self, num_layers, size_layers, learning_rate=1e-3, dropout=1.0): self.X = tf.placeholder(tf.int32, (None, None)) self.training = tf.placeholder(tf.bool, None) lookup_table = tf.get_variable( "lookup_table", dtype=tf.float32, shape=[len(vocab), size_layers], initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01), ) lookup_table = tf.concat((tf.zeros(shape=[1, size_layers]), lookup_table[1:, :]), 0) forward = tf.nn.embedding_lookup(lookup_table, self.X) self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled)) self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1) self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:] self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1)) batch_size = tf.shape(self.X)[0] seq_lens = tf.count_nonzero(tf.reduce_sum(self.decoder_inputs, -1), 1, dtype=tf.int32) + 1 def cells(reuse=False): return tf.contrib.rnn.DropoutWrapper( tf.nn.rnn_cell.LSTMCell( size_layers, initializer=tf.orthogonal_initializer(), reuse=reuse
tensorflow.zeros
13,359
import tensorflow as tf w = x_shape[2] + pad_w0 + pad_w1 pad_h1 += tf.mod(-h + bsize[1], bstrides[1])
tensorflow.mod
13,360
import tensorflow as tf output = model.build_server_graph(FLAGS, input_image) output = (output + 1.) * 127.5 output = tf.reverse(output, [-1]) output = tf.saturate_cast(output, tf.uint8) # load pretrained model vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) assign_ops = [] for var in vars_list: vname = var.name from_name = vname var_value = tf.contrib.framework.load_variable(checkpoint_dir, from_name) assign_ops.append(tf.assign(var, var_value)) sess.run(assign_ops) result = sess.run(output) tf.reset_default_graph() return result[0][:, :, ::-1]
tensorflow.contrib.framework.load_variable
13,361
from tensorflow.python.ops import array_ops name, 'expand_and_tile', (tensor, multiple, dim)) as scope: # Sparse. if isinstance(tensor, ops.SparseTensorValue): tensor = ops.SparseTensor.from_value(tensor) if isinstance(tensor, ops.SparseTensor): if dim < 0: expand_dims = array_ops.reshape( array_ops.size(tensor.shape) + dim, [1]) else: expand_dims = [dim] expanded_shape = array_ops.concat( 0, (array_ops.slice(tensor.shape, [0], expand_dims), [1], array_ops.slice(tensor.shape, expand_dims, [-1])), name='expanded_shape') expanded = sparse_ops.sparse_reshape( tensor, shape=expanded_shape, name='expand') if multiple == 1: return expanded return sparse_ops.sparse_concat( dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope) # Dense. expanded = array_ops.expand_dims( tensor, dim if (dim >= 0) else (dim - 1), name='expand')
tensorflow.python.ops.array_ops.slice
13,362
import tensorflow as tf # Policy Gradient loss, with truncated importance sampling & bias correction value = strip(value, self.n_envs, self.n_steps, True) # check_shape([qret, value, rho_i, f_i], [[self.n_envs * self.n_steps]] * 4) # check_shape([rho, distribution_f, q_value], [[self.n_envs * self.n_steps, self.n_act]] * 2) # Truncated importance sampling adv = qret - value log_f = tf.log(f_i + eps) # [n_envs * n_steps] gain_f = log_f * tf.stop_gradient(adv * tf.minimum(self.correction_term, rho_i)) loss_f = -tf.reduce_mean(gain_f) # Bias correction for the truncation adv_bc = (q_value - tf.reshape(value, [self.n_envs * self.n_steps, 1])) # [n_envs * n_steps, n_act] # check_shape([adv_bc, log_f_bc], [[self.n_envs * self.n_steps, self.n_act]] * 2) if continuous: gain_bc = tf.stop_gradient(adv_bc *
tensorflow.minimum
13,363
import tensorflow as tf self.range_tiled = range_tiled # Use the logical operations to create a mask indicator = tf.less(range_tiled, lengths_tiled+1) #i.e. where seq len is less than index trim = np.ones(indicator.get_shape()) trim[:,0] = 0 #ignore start symbol indicator = tf.logical_and(indicator, trim.astype(bool)) self.indicator = indicator sz = [batch_size, max_sequence_len] self._mask = tf.select(indicator, tf.ones(sz), tf.zeros(sz)) #-------------------------------# self.weights = tf.constant(weights, dtype=tf.float32, name='class_weights') hidden_size = model_params['model_hidden_size'] proj_size = model_params['model_proj_size'] # optional, can be None def GetCell(): """Creates an LSTM cell with dropout.""" c = tf.nn.rnn_cell.LSTMCell(hidden_size, use_peepholes=model_params['peepholes'], num_proj=proj_size) if dropout_keep_prob is not None: c = tf.nn.rnn_cell.DropoutWrapper(c, input_keep_prob=dropout_keep_prob) return c
tensorflow.constant
13,364
import tensorflow as tf model_carlini_adv = models_carlini(hps) #Construct predictions image = tf.placeholder(tf.float32,shape=[hps.batch_size, image_size, image_size, num_channel])############MNIST and CIFAR10 are different ar here adv_image = tf.placeholder(tf.float32,shape=[hps.batch_size, image_size, image_size, num_channel])############MNIST and CIFAR10 are different ar here predict = tf.placeholder(tf.float32,shape=[hps.batch_size, 10]) logit_nor,tsne_logit_nor = model_carlini_adv.predict(image,tsne_logits=True) logit_adv,tsne_logit_adv = model_carlini_adv.predict(adv_image,tsne_logits=True) predict_nor = tf.nn.softmax(logit_nor) predict_adv = tf.nn.softmax(logit_adv) # Calculate entropy argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1) normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1) entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot,1) / normalized_y_nonmaximal + tf.log(normalized_y_nonmaximal) for k in range(1): result_dict = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_for_attack_' + f1 + '.mat') result_dict_median = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_median_for_attack_' + f1 + '.mat') # e_mean = result_dict['mean_logits_' + f1] # 10X64 # e_invcovar = result_dict['inv_covar_' + f1] # 64X64X10 e_kernel_train = result_dict['kernel_'+f1+'_for_attack'] #100X64X10 e_median = result_dict_median['median_out'] # 10X1 if FLAGS.attack_method == 'carliniL2': attack1 = attacks.carliniL2.CarliniL2(sess, model_carlini_adv, batch_size=10, max_iterations=10,targeted=True, confidence=0, initial_const=1.0,binary_search_steps=9) attack2 = None
tensorflow.reduce_sum
13,365
from tensorflow.python.ops import array_ops 'image/class/label': parsing_ops.FixedLenFeature( shape=[1], dtype=dtypes.int64, default_value=array_ops.zeros( [1], dtype=dtypes.int64)) }
tensorflow.python.ops.array_ops.zeros
13,366
import tensorflow as tf "question") self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len, self.config.max_ch_len], "context_char") self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len, self.config.max_ch_len], "question_char") self.start_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label1") self.end_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label2") self.position_emb = position_embedding(self.c, 2 * self.config.hidden_size) self.c_mask = tf.cast(self.c, tf.bool) # index 0 is padding symbol N x self.max_p_num, max_p_len self.q_mask = tf.cast(self.q, tf.bool) self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1) self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1) self.dropout = tf.placeholder(tf.float32, name="dropout") self.global_step = tf.Variable(0, name="global_step", trainable=False) """
tensorflow.cast
13,367
from tensorflow.python.framework import ops """Calculates the on-disk weight parameters for BiasAdd.""" bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1]) bias_shape.assert_is_fully_defined() bias_count = np.prod(bias_shape.as_list()) return ops.OpStats("weight_parameters", bias_count) def xw_plus_b(x, weights, biases, name=None): # pylint: disable=invalid-name
tensorflow.python.framework.ops.OpStats
13,368
import tensorflow as tf # Add dropout if training if is_train: X = tf.nn.dropout(X, dropout_keep_prob) # Compute logits from X
tensorflow.nn.dropout
13,369
import tensorflow as tf pass @staticmethod def make_input_fn(is_training): """Construct training input_fn that uses synthetic data.""" def input_fn(params): """Generated input_fn for the given epoch.""" batch_size = (params["batch_size"] if is_training else params["eval_batch_size"]) num_users = params["num_users"] num_items = params["num_items"] users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=num_users) items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=num_items) if is_training: valid_point_mask = tf.cast(tf.random_uniform( [batch_size], dtype=tf.int32, minval=0, maxval=2), tf.bool) labels = tf.cast(tf.random_uniform( [batch_size], dtype=tf.int32, minval=0, maxval=2), tf.bool) data = { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items,
tensorflow.random_uniform
13,370
import tensorflow as tf c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout) q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout) c_emb = tf.concat([c_emb, ch_emb], axis=2) q_emb = tf.concat([q_emb, qh_emb], axis=2) self.c_emb = highway(c_emb, size=d, scope="highway", dropout=self.dropout, reuse=None) self.q_emb = highway(q_emb, size=d, scope="highway", dropout=self.dropout, reuse=True) def _encode(self): N, PL, QL, CL, d, dc, nh = self._params() if self.config.fix_pretrained_vector: dc = self.char_mat.get_shape()[-1] with tf.variable_scope("Embedding_Encoder_Layer"): self.c_embed_encoding = residual_block(self.c_emb, num_blocks=1, num_conv_layers=2, kernel_size=7, mask=self.c_mask, num_filters=d, num_heads=nh, seq_len=self.c_len, scope="Encoder_Residual_Block", bias=False, dropout=self.dropout) self.q_embed_encoding = residual_block(self.q_emb,
tensorflow.variable_scope
13,371
import tensorflow as tf return (model, graph, sess, saver, monitored_values) def _load_tf_vars(self, params): m = self._model utils.logger.log('Loading TF vars...') tf_vars = tf.global_variables() values = self._sess.run(tf_vars) # Get current values for vars # Build feed dict for op for loading vars # For each var, use current value of param in session if not in params var_feeddict = { m.var_phs[tf_var.name]: params[tf_var.name]
tensorflow.global_variables
13,372
import tensorflow as tf # Declare loss function (Cross Entropy loss) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target))
tensorflow.nn.sigmoid_cross_entropy_with_logits
13,373
import tensorflow as tf tf.app.flags.DEFINE_integer('num_residual_units', 5, 'num of residual units') tf.app.flags.DEFINE_string('Optimizer', 'mom', 'The optimizer used to train the model.') tf.app.flags.DEFINE_bool('RCE_train', False, 'Whether use RCE to train the model.') tf.app.flags.DEFINE_string('attack_method', 'fgsm', 'The attacking method used') tf.app.flags.DEFINE_float('eps', 0.01, 'The eps in attacking methods.') tf.app.flags.DEFINE_string('save_pwd', None, '') epoch_jsma = 100 num_classes = 10 if FLAGS.dataset == 'cifar10': image_size = 32 num_channel = 3
tensorflow.app.flags.DEFINE_string
13,374
import tensorflow as tf attention_states, encoder_state, encoder_input_length[:1] = multi_encoder( encoder_input_length=encoder_input_length[:1], **parameters) if chaining_stop_gradient: attns = tf.stop_gradient(attns) states = tf.stop_gradient(states) decoder_outputs = tf.stop_gradient(decoder_outputs) if chaining_strategy == 'concat_attns': attention_states[0] = tf.concat([attention_states[0], attns], axis=2) elif chaining_strategy == 'concat_states': attention_states[0] = tf.concat([attention_states[0], states], axis=2) elif chaining_strategy == 'sum_attns': attention_states[0] += attns elif chaining_strategy in ('map_attns', 'map_states', 'map_outputs'): if chaining_strategy == 'map_attns': x = attns elif chaining_strategy == 'map_outputs': x = decoder_outputs
tensorflow.concat
13,375
import tensorflow as tf def N0(mean, variance): return 1.0/(tf.sqrt(2.0 * m.pi * variance)) * tf.exp((-(mean**2))/(2*variance)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) A = tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)) return (1.0/(N*N)) * tf.reduce_sum(N0(A, 2*y)) + N0(0.0, 2.0 + 2*y) - (2/N) * tf.reduce_sum(N0(X, 1.0 + 2*y)) def cw_2d(X, y=None): def __phi(x): def __phi_f(s): t = s/7.5
tensorflow.expand_dims
13,376
import tensorflow as tf name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example
tensorflow.parse_single_example
13,377
import tensorflow as tf label=tf.cast(features['label'],tf.int32) image=tf.reshape(image,[4096,1]) return image,label def get_batch(image,label,batch_size,crop_size): #print(image.shape) #print(label.shape) images,labels=tf.train.shuffle_batch([image,label], batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_test_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
tensorflow.reshape
13,378
import tensorflow as tf "label_ids": tf.FixedLenFeature([], tf.int64), } serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None],
tensorflow.placeholder
13,379
import tensorflow as tf loss_pg = - tf.reduce_mean(pi.log_prob(batch['actions']) * batch['advantage']) - 0.01 * tf.reduce_mean(pi.entropy()) loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) self.a_grads = tf.gradients(loss_pg, self.pi_params) self.c_grads = tf.gradients(loss_vf, self.vf_params) self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0) self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0) opt = tf.train.AdamOptimizer(self.LR) self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params))
tensorflow.clip_by_global_norm
13,380
import tensorflow as tf target_weights = get_weights(targets[1][:, 1:], utils.EOS_ID, include_first_eos=True) xent_loss += reconstruction_weight * sequence_loss(logits=reconstructed_outputs, targets=targets[1][:, 1:], weights=target_weights) max_src_len = tf.shape(reconstructed_weights)[1] batch_size = tf.shape(reconstructed_weights)[0] attn_loss = tf.matmul(reconstructed_weights, attention_weights) - tf.eye(max_src_len) src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32) src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask) attn_loss *= tf.to_float(src_mask) # don't take padding words into account attn_loss = tf.norm(attn_loss) / tf.to_float(batch_size) xent_loss += reconstruction_attn_weight * attn_loss attention_weights = [attention_weights, reconstructed_weights] losses = [xent_loss, None, None] return losses, [outputs], encoder_state, attention_states, attention_weights, samples, beam_fun, initial_data def chained_encoder_decoder(encoders, decoders, encoder_inputs, targets, feed_previous, chaining_strategy=None, align_encoder_id=0, chaining_non_linearity=False,
tensorflow.to_float
13,381
import tensorflow as tf stats = add_train_stats(model, hparams) return model, stats def model_test_mode(args, feeder, hparams, global_step): with tf.variable_scope("Tacotron_model", reuse=tf.AUTO_REUSE) as scope: model = create_model("Tacotron", hparams) model.initialize(feeder.eval_inputs, feeder.eval_input_lengths, feeder.eval_speaker_embeddings, feeder.eval_mel_targets, feeder.eval_token_targets, targets_lengths=feeder.eval_targets_lengths,
tensorflow.variable_scope
13,382
from tensorflow.python.framework import ops # - For the unweighted case, this is just the number of rows. # - For the weighted case, it's the sum of the weights broadcast across # `average_precision` rows. max_var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=max_scope) if weights is None: batch_max = math_ops.to_double( array_ops.size(average_precision, name='batch_max')) else: # TODO(ptucker): More efficient way to broadcast? broadcast_weights = math_ops.mul( weights, array_ops.ones_like(average_precision), name='broadcast_weights') batch_max = math_ops.reduce_sum(broadcast_weights, name='batch_max') max_update = state_ops.assign_add(max_var, batch_max, name='update') with ops.name_scope(None, 'total', (average_precision,)) as total_scope: total_var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=total_scope) batch_total = math_ops.reduce_sum(average_precision, name='batch_total') total_update = state_ops.assign_add(total_var, batch_total, name='update') # Divide total by max to get mean, for both vars and the update ops. mean_average_precision = _safe_scalar_div(total_var, max_var, name='mean') update = _safe_scalar_div(total_update, max_update, name=scope) if metrics_collections: ops.add_to_collections(metrics_collections, mean_average_precision) if updates_collections: ops.add_to_collections(updates_collections, update)
tensorflow.python.framework.ops.name_scope
13,383
import tensorflow as tf label_ids = tf.reshape(label_ids, [-1])
tensorflow.reshape
13,384
import tensorflow as tf tf.gfile.DeleteRecursively(FLAGS.checkpoint_path) tf.gfile.MkDir(FLAGS.checkpoint_path) input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images') input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps') if FLAGS.geometry == 'RBOX': input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps') else: input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps') input_training_masks = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_training_masks') global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
tensorflow.placeholder
13,385
import tensorflow as tf x = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x - tf.reshape(m_init, [1, 1, 1, num_filters])) else: V = maybe_avg(V) g = maybe_avg(g) b = maybe_avg(b) # use weight normalization (Salimans & Kingma, 2016) W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2]) # calculate convolutional layer output x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1] + list(stride) + [1], pad), b) return x
tensorflow.reshape
13,386
import tensorflow as tf name='T', bias_initializer=tf.constant_initializer(-1.0)) return H * T + inputs * (1.0 - T) def conv1d(inputs, kernel_size, channels, activation, is_training, scope): with tf.variable_scope(scope): conv1d_output = tf.layers.conv1d( inputs, filters=channels, kernel_size=kernel_size, activation=activation, padding='same') return tf.layers.batch_normalization(conv1d_output, training=is_training)
tensorflow.layers.conv1d
13,387
import tensorflow as tf pos = tf.reshape(pos, [-1, 1]) pos = tf.minimum(pos, encoder_input_length - 1) idx = tf.tile(tf.to_float(tf.range(attn_length)), tf.stack([batch_size])) idx = tf.reshape(idx, [-1, attn_length]) low = pos - encoder.attn_window_size high = pos + encoder.attn_window_size mlow = tf.to_float(idx < low) mhigh = tf.to_float(idx > high) m = mlow + mhigh m += tf.to_float(idx >= encoder_input_length) mask = tf.to_float(tf.equal(m, 0.0)) e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs) weights = softmax(e, mask=mask) if encoder.attn_window_size > 0: sigma = encoder.attn_window_size / 2 numerator = -tf.pow((idx - pos), tf.convert_to_tensor(2, dtype=tf.float32)) div = tf.truediv(numerator, 2 * sigma ** 2)
tensorflow.to_float
13,388
import tensorflow as tf return weighted_average, weights def no_attention(state, hidden_states, *args, **kwargs): batch_size = tf.shape(state)[0] weighted_average = tf.zeros(shape=tf.stack([batch_size, 0])) weights = tf.zeros(shape=[batch_size, tf.shape(hidden_states)[1]]) return weighted_average, weights def average_attention(hidden_states, encoder_input_length, *args, **kwargs): # attention with fixed weights (average of all hidden states) lengths = tf.to_float(tf.expand_dims(encoder_input_length, axis=1)) mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1]) weights = tf.to_float(mask) / lengths weighted_average = tf.reduce_sum(hidden_states * tf.expand_dims(weights, axis=2), axis=1) return weighted_average, weights def last_state_attention(hidden_states, encoder_input_length, *args, **kwargs): weights = tf.one_hot(encoder_input_length - 1, tf.shape(hidden_states)[1]) weights = tf.to_float(weights) weighted_average = tf.reduce_sum(hidden_states * tf.expand_dims(weights, axis=2), axis=1) return weighted_average, weights
tensorflow.shape
13,389
import tensorflow as tf with self.test_session(graph=tf.Graph()): # Imports the text format graph. tf.train.import_meta_graph(filename) # Writes wrong contents to the file. tf.train.write_graph(saver.as_saver_def(), os.path.dirname(filename), os.path.basename(filename)) with self.test_session(graph=tf.Graph()): # Import should fail. with self.assertRaisesWithPredicateMatch( IOError, lambda e: "Cannot parse file"): tf.train.import_meta_graph(filename) # Deletes the file gfile.Remove(filename) with self.assertRaisesWithPredicateMatch( IOError, lambda e: "does not exist"): tf.train.import_meta_graph(filename) def testSliceVariable(self): test_dir = self._TestDir("slice_saver") filename = os.path.join(test_dir, "metafile") with self.test_session(): v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # The names are different and will work. slice_saver = tf.train.Saver({"first": v1, "second": v2}) tf.initialize_all_variables().run() # Exports to meta_graph meta_graph_def = slice_saver.export_meta_graph(filename)
tensorflow.train.import_meta_graph
13,390
import tensorflow as tf def test_generator_alpha(self): with self.test_session(use_gpu=True) as sess: alpha_fixed_block_id = [ sess.run( networks._generator_alpha(2, tf.constant(progress, tf.float32))) for progress in [0, 0.2, 1, 1.2, 2, 2.2, 3] ] alpha_fixed_progress = [ sess.run( networks._generator_alpha(block_id, tf.constant(1.2, tf.float32))) for block_id in range(1, 5) ] self.assertArrayNear(alpha_fixed_block_id, [0, 0.2, 1, 0.8, 0, 0, 0], 1.0e-6) self.assertArrayNear(alpha_fixed_progress, [0, 0.8, 0.2, 0], 1.0e-6) def test_discriminator_alpha(self): with self.test_session(use_gpu=True) as sess:
tensorflow.constant
13,391
import tensorflow as tf num_channels_in = self.top_size name = 'affine' + str(self.counts['affine']) self.counts['affine'] += 1 with tf.variable_scope(name): init_factor = 2. if activation == 'relu' else 1. kernel = tf.get_variable( 'weights', [num_channels_in, num_out_channels], self.data_type, tf.random_normal_initializer(stddev=np.sqrt(init_factor / (num_channels_in)))) biases = tf.get_variable('biases', [num_out_channels], self.data_type, tf.constant_initializer(0.0)) logits = tf.matmul(input_layer, kernel) + biases if activation == 'relu': affine1 = tf.nn.relu(logits, name=name) elif activation == 'linear' or activation is None: affine1 = logits else: raise KeyError('Invalid activation type \'%s\'' % activation) self.top_layer = affine1 self.top_size = num_out_channels return affine1 def resnet_bottleneck_v1(self, depth, depth_bottleneck, stride, input_layer=None, in_size=None):
tensorflow.nn.relu
13,392
import tensorflow as tf x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) loss, _, _ = l2hmc.compute_loss(dynamics, x) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) train_op, loss, _ = graph_step(dynamics, optimizer, x) # Single thread; fairer comparison against eager session_conf = tf.ConfigProto(inter_op_parallelism_threads=1)
tensorflow.train.AdamOptimizer
13,393
import tensorflow as tf next_relabelled_obs, step_type=(), network_state=())[0].sample() critic_input = (next_relabelled_obs, sampled_actions_tiled) q_vals, _ = self._critic(critic_input, training=False) q_vals_vec = tf.reshape(q_vals, (batch_size, num_tasks)) rewards, dones = self._task_distribution.evaluate(states_tiled, actions_tiled, tasks_tiled) dones = tf.cast(dones, tf.float32) rewards_vec = tf.reshape(rewards, (batch_size, num_tasks)) dones_vec = tf.reshape(dones, (batch_size, num_tasks)) relabelled_obs = self._task_distribution.combine(states_tiled, tasks_tiled) action_distribution = self._actor( relabelled_obs, step_type=(), network_state=())[0] log_pi = common.log_probability(action_distribution, actions_tiled, action_spec) log_pi_vec = tf.reshape(log_pi, (batch_size, num_tasks)) logits_vec = (
tensorflow.reshape
13,394
import tensorflow as tf batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) output = f(tf.constant([[1, 3]]), tf.constant([2])) tf.train.start_queue_runners()
tensorflow.constant
13,395
import tensorflow as tf eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
tensorflow.logging.info
13,396
import tensorflow as tf Res = model_name.ResNet(hps, images, FLAGS.mode, Reuse=False) Res.build_graph() saver = tf.train.Saver() # Open session and restore checkpoint sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) sess.run(tf.global_variables_initializer()) ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
tensorflow.train.start_queue_runners
13,397
from tensorflow.python.ops import math_ops labels, labels, weights=weights, name='variance_labels') pearson_r = _safe_div( cov, math_ops.mul(math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)), 'pearson_r') with ops.control_dependencies( [update_cov, update_var_predictions, update_var_labels]):
tensorflow.python.ops.math_ops.sqrt
13,398
import tensorflow as tf cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob) elif cell_type == 'GRU': if activation == 'linear': gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.identity) cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob) elif activation == 'relu': gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.nn.relu) cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob) else: gru=tf.nn.rnn_cell.GRUCell(state_size) cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
tensorflow.contrib.rnn.DropoutWrapper
13,399