Dataset Viewer
Auto-converted to Parquet
id
stringlengths
13
16
audio
audioduration (s)
5
9
sampling_rate
int32
8k
48k
mos
float32
1
4.88
raw_ratings
listlengths
8
8
P422-fileid_1
48,000
1.875
[ 2, 2, 4, 1, 3, 1, 1, 1 ]
P422-fileid_3
22,050
3.125
[ 2, 2, 3, 4, 4, 3, 3, 4 ]
P422-fileid_5
16,000
2.125
[ 5, 2, 2, 1, 3, 1, 1, 2 ]
P422-fileid_8
24,000
4.25
[ 5, 4, 5, 4, 4, 4, 4, 4 ]
P422-fileid_11
8,000
2.625
[ 2, 3, 4, 1, 3, 3, 3, 2 ]
P422-fileid_13
32,000
3.125
[ 4, 4, 3, 1, 4, 3, 3, 3 ]
P422-fileid_18
32,000
3.5
[ 5, 4, 4, 4, 2, 2, 5, 2 ]
P422-fileid_19
48,000
2.875
[ 4, 1, 3, 4, 3, 3, 2, 3 ]
P422-fileid_24
22,050
2.75
[ 3, 2, 2, 3, 2, 3, 4, 3 ]
P422-fileid_29
32,000
3.125
[ 3, 3, 4, 2, 4, 3, 3, 3 ]
P422-fileid_31
32,000
2.875
[ 5, 2, 2, 3, 2, 3, 3, 3 ]
P422-fileid_32
24,000
3.375
[ 1, 4, 4, 2, 4, 4, 4, 4 ]
P422-fileid_34
32,000
3.625
[ 2, 4, 5, 4, 3, 4, 4, 3 ]
P422-fileid_37
48,000
2.25
[ 3, 2, 3, 2, 3, 3, 1, 1 ]
P422-fileid_38
16,000
2.5
[ 2, 1, 3, 1, 3, 4, 4, 2 ]
P422-fileid_39
44,100
4
[ 4, 4, 4, 4, 5, 4, 5, 2 ]
P422-fileid_42
48,000
3.375
[ 4, 4, 4, 3, 3, 4, 2, 3 ]
P422-fileid_44
16,000
3.375
[ 3, 3, 3, 5, 4, 3, 3, 3 ]
P422-fileid_48
32,000
3.5
[ 2, 4, 4, 2, 5, 4, 4, 3 ]
P422-fileid_51
22,050
2.125
[ 1, 2, 2, 1, 3, 2, 3, 3 ]
P422-fileid_52
22,050
2
[ 1, 3, 2, 1, 2, 3, 3, 1 ]
P422-fileid_54
16,000
2.375
[ 3, 4, 2, 3, 4, 1, 1, 1 ]
P422-fileid_59
48,000
2.375
[ 4, 5, 4, 2, 1, 1, 1, 1 ]
P422-fileid_64
32,000
4
[ 4, 3, 5, 5, 3, 3, 5, 4 ]
P422-fileid_67
24,000
3.5
[ 3, 4, 4, 3, 3, 4, 3, 4 ]
P422-fileid_76
16,000
2.375
[ 3, 5, 3, 1, 2, 1, 2, 2 ]
P422-fileid_77
16,000
2.25
[ 2, 1, 2, 3, 3, 3, 1, 3 ]
P422-fileid_78
32,000
2.625
[ 2, 5, 1, 3, 2, 1, 4, 3 ]
P422-fileid_80
16,000
3.125
[ 3, 2, 1, 4, 3, 4, 4, 4 ]
P422-fileid_86
16,000
3
[ 4, 5, 2, 2, 1, 3, 4, 3 ]
P422-fileid_87
24,000
3.625
[ 2, 4, 5, 3, 4, 4, 4, 3 ]
P422-fileid_89
8,000
1.875
[ 3, 2, 2, 3, 1, 2, 1, 1 ]
P422-fileid_96
8,000
2.625
[ 1, 2, 3, 3, 3, 3, 3, 3 ]
P422-fileid_99
16,000
2.875
[ 3, 3, 4, 2, 4, 3, 2, 2 ]
P422-fileid_101
32,000
3.125
[ 4, 3, 2, 4, 3, 2, 4, 3 ]
P422-fileid_104
44,100
3
[ 3, 2, 3, 3, 3, 4, 2, 4 ]
P422-fileid_107
16,000
2.5
[ 1, 3, 2, 2, 3, 4, 3, 2 ]
P422-fileid_108
32,000
2.5
[ 3, 1, 3, 1, 4, 3, 3, 2 ]
P422-fileid_113
8,000
2.5
[ 2, 2, 3, 5, 3, 1, 3, 1 ]
P422-fileid_115
24,000
3.375
[ 4, 3, 4, 4, 4, 4, 1, 3 ]
P422-fileid_123
44,100
2
[ 3, 1, 1, 2, 4, 2, 2, 1 ]
P422-fileid_124
48,000
2.75
[ 3, 3, 2, 3, 4, 3, 2, 2 ]
P422-fileid_140
44,100
3.625
[ 3, 2, 5, 4, 4, 4, 3, 4 ]
P422-fileid_149
48,000
3.625
[ 4, 4, 3, 4, 2, 4, 4, 4 ]
P422-fileid_162
48,000
2.5
[ 3, 2, 3, 2, 2, 4, 3, 1 ]
P422-fileid_165
48,000
2.5
[ 3, 1, 3, 3, 1, 3, 3, 3 ]
P422-fileid_168
48,000
3.125
[ 3, 4, 1, 5, 2, 4, 3, 3 ]
P422-fileid_170
16,000
2.625
[ 2, 3, 2, 2, 4, 1, 3, 4 ]
P422-fileid_171
48,000
1.625
[ 1, 1, 2, 1, 3, 3, 1, 1 ]
P422-fileid_174
32,000
2.75
[ 4, 2, 1, 4, 2, 3, 3, 3 ]
P422-fileid_182
48,000
2.5
[ 1, 2, 2, 4, 2, 3, 2, 4 ]
P422-fileid_184
22,050
3.75
[ 3, 4, 2, 4, 5, 3, 4, 5 ]
P422-fileid_187
24,000
3.625
[ 2, 2, 4, 4, 4, 4, 4, 5 ]
P422-fileid_188
8,000
2.625
[ 3, 1, 3, 2, 2, 4, 4, 2 ]
P422-fileid_196
16,000
2.875
[ 4, 5, 2, 1, 3, 2, 3, 3 ]
P422-fileid_197
24,000
2.875
[ 2, 3, 3, 1, 4, 4, 4, 2 ]
P422-fileid_198
24,000
2.875
[ 3, 3, 1, 2, 4, 4, 2, 4 ]
P422-fileid_199
16,000
3.875
[ 4, 4, 4, 4, 4, 4, 3, 4 ]
P422-fileid_201
16,000
3.75
[ 3, 3, 4, 4, 4, 4, 4, 4 ]
P422-fileid_205
32,000
3.125
[ 2, 3, 3, 4, 2, 4, 3, 4 ]
P422-fileid_208
8,000
3.75
[ 3, 4, 4, 3, 4, 5, 4, 3 ]
P422-fileid_210
48,000
3
[ 1, 4, 3, 4, 3, 1, 4, 4 ]
P422-fileid_214
44,100
3.75
[ 5, 4, 3, 4, 1, 4, 5, 4 ]
P422-fileid_221
32,000
3.125
[ 3, 3, 4, 2, 2, 3, 4, 4 ]
P422-fileid_223
48,000
3.25
[ 1, 4, 3, 1, 3, 5, 4, 5 ]
P422-fileid_224
24,000
3.125
[ 3, 3, 3, 5, 1, 3, 3, 4 ]
P422-fileid_225
16,000
3.875
[ 4, 4, 3, 4, 5, 4, 3, 4 ]
P422-fileid_232
22,050
2.375
[ 1, 3, 1, 2, 2, 3, 2, 5 ]
P422-fileid_234
32,000
2.25
[ 1, 3, 2, 2, 3, 4, 2, 1 ]
P422-fileid_236
44,100
2.75
[ 3, 1, 4, 5, 4, 2, 2, 1 ]
P422-fileid_242
8,000
2.25
[ 4, 1, 1, 3, 1, 3, 2, 3 ]
P422-fileid_244
22,050
3.75
[ 3, 4, 4, 3, 3, 4, 5, 4 ]
P422-fileid_245
48,000
2
[ 2, 2, 1, 5, 1, 2, 2, 1 ]
P422-fileid_246
8,000
2
[ 1, 1, 2, 1, 3, 3, 3, 2 ]
P422-fileid_247
22,050
3.25
[ 5, 2, 3, 4, 4, 1, 3, 4 ]
P422-fileid_248
48,000
3.5
[ 5, 3, 4, 4, 4, 1, 3, 4 ]
P422-fileid_249
8,000
2.375
[ 1, 4, 2, 3, 3, 4, 1, 1 ]
P422-fileid_261
48,000
2.75
[ 2, 3, 3, 1, 3, 3, 4, 3 ]
P422-fileid_264
32,000
3.75
[ 4, 5, 3, 4, 4, 3, 4, 3 ]
P422-fileid_265
32,000
2.75
[ 2, 4, 4, 3, 2, 2, 1, 4 ]
P422-fileid_275
32,000
2.375
[ 1, 3, 2, 2, 3, 3, 3, 2 ]
P422-fileid_277
44,100
2.5
[ 3, 4, 2, 2, 2, 2, 1, 4 ]
P422-fileid_281
48,000
2.625
[ 1, 2, 4, 3, 1, 4, 3, 3 ]
P422-fileid_286
48,000
1.875
[ 2, 1, 1, 3, 2, 1, 3, 2 ]
P422-fileid_287
44,100
2.25
[ 3, 3, 4, 1, 2, 1, 3, 1 ]
P422-fileid_292
32,000
4
[ 5, 5, 4, 3, 4, 2, 4, 5 ]
P422-fileid_294
48,000
3.125
[ 3, 4, 1, 2, 3, 3, 5, 4 ]
P422-fileid_295
22,050
3.125
[ 2, 4, 3, 4, 3, 4, 3, 2 ]
P422-fileid_297
48,000
1.75
[ 1, 2, 2, 2, 1, 1, 3, 2 ]
P422-fileid_302
44,100
4.375
[ 5, 4, 4, 4, 4, 5, 4, 5 ]
P422-fileid_304
16,000
3.25
[ 4, 3, 4, 3, 3, 3, 2, 4 ]
P422-fileid_310
32,000
3.125
[ 5, 1, 4, 2, 1, 4, 5, 3 ]
P422-fileid_311
48,000
3.75
[ 3, 3, 4, 4, 5, 4, 3, 4 ]
P422-fileid_314
48,000
3.375
[ 4, 5, 5, 1, 3, 4, 4, 1 ]
P422-fileid_317
16,000
1.625
[ 3, 1, 1, 1, 1, 1, 2, 3 ]
P422-fileid_325
22,050
1.875
[ 1, 1, 2, 1, 2, 4, 2, 2 ]
P422-fileid_330
32,000
2.625
[ 3, 3, 1, 2, 1, 3, 3, 5 ]
P422-fileid_331
44,100
2.5
[ 2, 3, 3, 2, 3, 4, 2, 1 ]
P422-fileid_336
8,000
2.875
[ 4, 2, 2, 2, 4, 2, 4, 3 ]
P422-fileid_337
44,100
2.375
[ 3, 1, 5, 2, 1, 2, 2, 3 ]
End of preview. Expand in Data Studio

Dataset Description

This dataset contains noisy and enhanced speech samples with human-labeled mean opinion scores (MOS), which was constructed in the 2024 URGENT Speech Enhancement Challenge (https://urgent-challenge.github.io/urgent2024/), an official NeurIPS 2024 Competition. The dataset is intended to facilitate research on speech quality assessment (SQA) and speech enhancement (SE) systems.

The dataset consists of the noisy and 22 enhanced versions of a subset (300 samples) of the blind test dataset in the 2024 URGENT Speech Enhancement Challenge. In total, it 6900 speech samples with MOS labels (~13.8 hours).

The MOS label for each speech sample were collected from 8 distinct human subjects through Amazon Mechanical Turk (MTurk) platform, following the P.808 recommendation. The raw ratings from each subject were averaged to obtain the final MOS score.

Detailed information about the MOS collection process can be found in our summary paper (to be released).

All speech samples in this dataset are in English, with a single microphone channel and sampling frequencies ranging from 8 kHz to 48 kHz.

Example Usage

The dataset can be loaded using the datasets library.

from datasets import load_dataset

data = load_dataset("urgent-challenge/urgent2024_mos")

# Load a single sample
sample = data["test"][100]
print(sample)

# Iterate over all samples
# for idx, sample in enumerate(data["test"]):
#     print(sample)

This will generate the following output:

{
  'id': 'P422-fileid_338',
  'audio': {'path': None, 'array': array([ 0.00027466, -0.00161743,  0.00033569, ...,  0.        , 0.        ,  0.        ]), 'sampling_rate': 16000},
  'sampling_rate': 16000,
  'mos': 2.5,
  'raw_ratings': [5, 4, 1, 2, 3, 1, 2, 2],
}

Data fields

  • id: Unique identifier for the sample.
  • audio: Dictionary containing the audio data.
    • path: Path to the audio file (always None in this dataset).
    • array: Numpy array of the audio signal.
    • sampling_rate: Sampling rate of the audio signal in Hz.
  • sampling_rate: Sampling rate of the audio signal in Hz.
  • mos: Mean opinion score (MOS) for the audio sample, ranging from 1 (bad) to 5 (excellent).
  • raw_ratings: List of raw ratings from human subjects, each ranging from 1 (bad) to 5 (excellent).

The id field follows the following unified format: "{participant_id}-{fileid}", where participant_id is the ID of the participant who generated the audio sample, and fileid is the ID of the audio file (shared among different participants).

More information and analysis

For more information about the dataset, including the data collection process and analysis of the results, please refer to our analysis paper (to be released).

Acknowledgment and license information

The 2024 URGENT Challenge data were created based on the following source speech, noise, and room impulse response (RIR) data, which are publicly available with varying licenses:

Source speech

Expand to see a full list of Youtube audio data used in this competition

2ziV6vH-5wo, 4SzRZvEvyr8, 7XcyE1Rrp8g, 5ZqqXHz_xyo, 617jBfdO8MQ, AOvV9m7feKo, JDAYv4tv7yk, JQkewbO-qf4, rj27kDNtl2c, uB_ykR_yjnY, 4G1__QdEp0U, AbixsuKqfLQ, G3zK1aB_zU4, LWC3dS8EEDM, LZnNzQse2OA, QCltA8fDdQw, RaQ96aK4f58, WFAf2kEEBaI, c6UOJfoenss, kBJ2yTaq-UU, klvdARnvpjg, kmQBICeWhAQ, mWF5GXvfP-4, q_Tjw0SnRu8, ud0Aqc3lqLU, wr1hs6geXyk, omhUqE0SANk, d5NEhm7ZOyc, xw39PKAXkdE, qQrY8ZjSCnQ, GLeoET3gZWg, i_r3gCZrdSc, omhUqE0SANk, qQrY8ZjSCnQ, COls47WPPNk, qQrY8ZjSCnQ, xw39PKAXkdE, In35ZJEGtu8, bLVLhLMoV70, pkc-AJTfNDY, nIWnC9RMW08, GLeoET3gZWg, qQrY8ZjSCnQ, FtN8XzP8ZWg, 9up7LiqU9u4, i_r3gCZrdSc, omhUqE0SANk, nIWnC9RMW08, zWDJojt_KTU, AAckOJEBODk, VE0v1gsOMlw, kDDEQUfMT_8, d5NEhm7ZOyc, DUAdarwNCRs, qQrY8ZjSCnQ, 9jiyee7zCXo, 9up7LiqU9u4, pauj3PKE6L4, GLeoET3gZWg, 5YrhJMiyaPM, qQrY8ZjSCnQ, 5YrhJMiyaPM, POXAC1WpDBU, FtN8XzP8ZWg, qQrY8ZjSCnQ, DUAdarwNCRs, pauj3PKE6L4, qQrY8ZjSCnQ, 4geYwpsHQd8, 2r2BRN2tAFc, pauj3PKE6L4, xw39PKAXkdE, ZtUv67HHw6g, POXAC1WpDBU, Ab6ryHD_ahQ, zWDJojt_KTU, nIWnC9RMW08, d5NEhm7ZOyc, COls47WPPNk, 9up7LiqU9u4, omhUqE0SANk, 9R4O3bzONQQ, l6L2xaYRm7U, nIWnC9RMW08, qQrY8ZjSCnQ, zWDJojt_KTU, COls47WPPNk, GLeoET3gZWg, nIWnC9RMW08, mL6-d5mTQuM, qQrY8ZjSCnQ, bLVLhLMoV70, qQrY8ZjSCnQ, kDDEQUfMT_8, zY4K3sEL5lU, 9jiyee7zCXo, qQrY8ZjSCnQ, sG548miBvh0, 9up7LiqU9u4, qQrY8ZjSCnQ, GLeoET3gZWg, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, qQrY8ZjSCnQ, COls47WPPNk, FtN8XzP8ZWg, In35ZJEGtu8, l6L2xaYRm7U, qQrY8ZjSCnQ, 9zy1SdoIpkA, nIWnC9RMW08, l6rHUHZx5Vc, xw39PKAXkdE, qQrY8ZjSCnQ, omhUqE0SANk, R5gE6vK8c7Y, 9jiyee7zCXo, pauj3PKE6L4, 9R4O3bzONQQ, omhUqE0SANk, zY4K3sEL5lU, omhUqE0SANk, 6vcXN7ko3Fk, COls47WPPNk, FmtbYlybAlo, zWDJojt_KTU, 9R4O3bzONQQ, 9jiyee7zCXo, i_r3gCZrdSc, qQrY8ZjSCnQ, omhUqE0SANk, qQrY8ZjSCnQ, 541Dq1D1_JY, 9R4O3bzONQQ, 9up7LiqU9u4, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, ZtUv67HHw6g, qQrY8ZjSCnQ, l6rHUHZx5Vc, bLVLhLMoV70, COls47WPPNk, 9jiyee7zCXo, omhUqE0SANk, qQrY8ZjSCnQ, POXAC1WpDBU, qQrY8ZjSCnQ, d5NEhm7ZOyc, DUAdarwNCRs, 5YrhJMiyaPM, l6L2xaYRm7U, zWDJojt_KTU, DUAdarwNCRs, pauj3PKE6L4, sk53YzngvEs, omhUqE0SANk, Ab6ryHD_ahQ, OB9GAgiEVqk, xw39PKAXkdE, WyugIciIeq8, s4HerxySu4c, pauj3PKE6L4, 9R4O3bzONQQ, qQrY8ZjSCnQ, omhUqE0SANk, DUAdarwNCRs, 9jiyee7zCXo, qQrY8ZjSCnQ, l6L2xaYRm7U, WyugIciIeq8, GLeoET3gZWg, In35ZJEGtu8, WyugIciIeq8, pkc-AJTfNDY, jzcrUdexbNE, POXAC1WpDBU, i_r3gCZrdSc, POXAC1WpDBU, FtN8XzP8ZWg, Ab6ryHD_ahQ, qQrY8ZjSCnQ, 6vcXN7ko3Fk, VE0v1gsOMlw, GLeoET3gZWg, s4HerxySu4c, omhUqE0SANk, 9R4O3bzONQQ, 2MZR4cT7GbY, nIWnC9RMW08, d5NEhm7ZOyc, xw39PKAXkdE, Yvy_WkwkufU, d5NEhm7ZOyc, s4HerxySu4c, 9up7LiqU9u4, l6rHUHZx5Vc, WyugIciIeq8, 9zy1SdoIpkA, l6L2xaYRm7U, qQrY8ZjSCnQ, xw39PKAXkdE, i_r3gCZrdSc, jzcrUdexbNE, DUAdarwNCRs, d5NEhm7ZOyc, 5YrhJMiyaPM, qQrY8ZjSCnQ, nIWnC9RMW08, Yvy_WkwkufU, 5YrhJMiyaPM, sk53YzngvEs, qQrY8ZjSCnQ, l6L2xaYRm7U, 2t18v4HnQxY, qQrY8ZjSCnQ, l6L2xaYRm7U, DUAdarwNCRs, ZtUv67HHw6g, i_r3gCZrdSc, s4HerxySu4c, COls47WPPNk, zWDJojt_KTU, l6L2xaYRm7U, ZtUv67HHw6g, omhUqE0SANk, nIWnC9RMW08, 9up7LiqU9u4, 5YrhJMiyaPM, qQrY8ZjSCnQ, 9up7LiqU9u4, pauj3PKE6L4, VE0v1gsOMlw, GLeoET3gZWg, VE0v1gsOMlw, Ab6ryHD_ahQ, WyugIciIeq8, qQrY8ZjSCnQ, jzcrUdexbNE, l6L2xaYRm7U, POXAC1WpDBU, WyugIciIeq8, FtN8XzP8ZWg, qQrY8ZjSCnQ, GLeoET3gZWg, In35ZJEGtu8, 6vcXN7ko3Fk, GLeoET3gZWg, pauj3PKE6L4, nIWnC9RMW08, FtN8XzP8ZWg, WyugIciIeq8, DUAdarwNCRs, xw39PKAXkdE, l6L2xaYRm7U, SPxCCLU0cTs, Ab6ryHD_ahQ, xw39PKAXkdE, pauj3PKE6L4, sG548miBvh0, i_r3gCZrdSc, SSNfXY_xwxc, POXAC1WpDBU, WyugIciIeq8, qQrY8ZjSCnQ, s4HerxySu4c, 5YrhJMiyaPM, qQrY8ZjSCnQ, bLVLhLMoV70, 9jiyee7zCXo, qQrY8ZjSCnQ, Yvy_WkwkufU, POXAC1WpDBU, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, l6L2xaYRm7U, POXAC1WpDBU, l6rHUHZx5Vc, COls47WPPNk, VE0v1gsOMlw, pkc-AJTfNDY, VE0v1gsOMlw, UFADTgwc4ew, COls47WPPNk, s4HerxySu4c, l6L2xaYRm7U, 6vcXN7ko3Fk, l6L2xaYRm7U, omhUqE0SANk, s4HerxySu4c, FmtbYlybAlo, xw39PKAXkdE, GLeoET3gZWg, qQrY8ZjSCnQ, l6L2xaYRm7U, d5NEhm7ZOyc, 9jiyee7zCXo, d5NEhm7ZOyc, qQrY8ZjSCnQ, VE0v1gsOMlw, i_r3gCZrdSc, 9R4O3bzONQQ, d5NEhm7ZOyc, 9R4O3bzONQQ, 9up7LiqU9u4, COls47WPPNk, 9jiyee7zCXo, bLVLhLMoV70, GLeoET3gZWg, zWDJojt_KTU, UFADTgwc4ew, 9up7LiqU9u4, 9R4O3bzONQQ, VE0v1gsOMlw, POXAC1WpDBU, ZtUv67HHw6g, WyugIciIeq8, d5NEhm7ZOyc, qQrY8ZjSCnQ, 9R4O3bzONQQ, s4HerxySu4c, i_r3gCZrdSc, 4geYwpsHQd8, Ab6ryHD_ahQ, omhUqE0SANk, qQrY8ZjSCnQ, l6rHUHZx5Vc, pauj3PKE6L4, omhUqE0SANk, COls47WPPNk, qQrY8ZjSCnQ, 9R4O3bzONQQ, SPxCCLU0cTs, l6rHUHZx5Vc, POXAC1WpDBU, i_r3gCZrdSc, qQrY8ZjSCnQ, SPxCCLU0cTs, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, l6rHUHZx5Vc, POXAC1WpDBU, 9jiyee7zCXo, Ab6ryHD_ahQ, WyugIciIeq8, COls47WPPNk, WyugIciIeq8, GLeoET3gZWg, qQrY8ZjSCnQ, VE0v1gsOMlw, 6vcXN7ko3Fk, bLVLhLMoV70, VE0v1gsOMlw, xw39PKAXkdE, UFADTgwc4ew, qQrY8ZjSCnQ, GLeoET3gZWg, l6rHUHZx5Vc, omhUqE0SANk, xw39PKAXkdE, COls47WPPNk, 2t18v4HnQxY, l6L2xaYRm7U, SSNfXY_xwxc, GLeoET3gZWg, WyugIciIeq8, FmtbYlybAlo, qQrY8ZjSCnQ, l6L2xaYRm7U, Ab6ryHD_ahQ, pkc-AJTfNDY, xw39PKAXkdE, mL6-d5mTQuM, l6L2xaYRm7U

Source noise

Source RIRs

Citation:

Please cite this paper if you use this dataset in your research:

@inproceedings{URGENT-Zhang2024,
  title={{URGENT} Challenge: Universality, Robustness, and Generalizability For Speech Enhancement},
  author={Zhang, Wangyou and Scheibler, Robin and Saijo, Kohei and Cornell, Samuele and Li, Chenda and Ni, Zhaoheng and Pirklbauer, Jan and Sach, Marvin and Watanabe, Shinji and Fingscheidt, Tim and Qian, Yanmin},
  booktitle={Proc. Interspeech},
  pages={4868--4872},
  year={2024},
}
Downloads last month
181