Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}). This happened while the csv dataset builder was generating data using hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Question ID: int64 Image ID: string spacing: string shape: string sex: string age: double scanner: string contrast: string question: string answer: string multiple-choice question: string correct option: string organ: string lesion: string question type: string question subtype: string split: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2259 to {'original id': Value(dtype='string', id=None), 'AbdomenAtlas_id': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}). This happened while the csv dataset builder was generating data using hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
original id
string | AbdomenAtlas_id
string |
---|---|
autoPET_PETCT_404f8c732f | BDMAP_00000001 |
TCIA-Pancreas-CT_PANCREAS_0039 | BDMAP_00000002 |
TotalSegmentator_s0543 | BDMAP_00000003 |
MSD-Colon_colon_195 | BDMAP_00000004 |
TCIAColon_TCIAColon_0256_0_1 | BDMAP_00000005 |
autoPET_PETCT_63464433c8 | BDMAP_00000006 |
MSD-HepaticVessel_hepaticvessel_447 | BDMAP_00000007 |
KiTS19-21_prediction_00280 | BDMAP_00000008 |
WORD_word_0086 | BDMAP_00000009 |
autoPET_PETCT_f637b5930b | BDMAP_00000010 |
autoPET_PETCT_49479d6e64 | BDMAP_00000011 |
TCIAColon_TCIAColon_0300_0_1 | BDMAP_00000012 |
MSD-HepaticVessel_hepaticvessel_200 | BDMAP_00000013 |
TotalSegmentator_s0904 | BDMAP_00000014 |
MSD-HepaticVessel_hepaticvessel_406 | BDMAP_00000015 |
TCIA-LDCT_LDCT-L277_0_1 | BDMAP_00000016 |
FLARE23Val_FLARE23_Ts_0084_0000 | BDMAP_00000017 |
TotalSegmentator_s1089 | BDMAP_00000018 |
TCIAColon_TCIAColon_0233_0_4 | BDMAP_00000019 |
BTCV_img0034 | BDMAP_00000020 |
TotalSegmentator_s0369 | BDMAP_00000021 |
TCIAColon_TCIAColon_0249_0_2 | BDMAP_00000022 |
KiTS21_img0228 | BDMAP_00000023 |
MSD-Pancreas_pancreas_476 | BDMAP_00000024 |
MSD-Hepatic_hepaticvessel_343 | BDMAP_00000025 |
NIH-Lymph_NIH-LYMPH-ABD-041_0_0 | BDMAP_00000026 |
MSD-Colon_colon_188 | BDMAP_00000027 |
AbdomenCT-1K_Case_01035_0000 | BDMAP_00000028 |
MSD-Hepatic_hepaticvessel_334 | BDMAP_00000029 |
MSD-Colon_colon_139 | BDMAP_00000030 |
autoPET_PETCT_b53ba7c6bf | BDMAP_00000031 |
autoPET_PETCT_5d553bf6b4 | BDMAP_00000032 |
autoPET_PETCT_ba81e4b04b | BDMAP_00000033 |
KiTS21_img0268 | BDMAP_00000034 |
Decathlon_hepaticvessel_325 | BDMAP_00000035 |
KiTS23_case_00401 | BDMAP_00000036 |
MSD-Hepatic_hepaticvessel_036 | BDMAP_00000037 |
Decathlon_hepaticvessel_199 | BDMAP_00000038 |
KiTS21_img0066 | BDMAP_00000039 |
TCIAColon_TCIAColon_0262_0_3 | BDMAP_00000040 |
autoPET_PETCT_f5c2c09846 | BDMAP_00000041 |
TotalSegmentator_s0250 | BDMAP_00000042 |
KiTS21_img0298 | BDMAP_00000043 |
KiTS23_case_00512 | BDMAP_00000044 |
MSD-Colon_colon_128 | BDMAP_00000045 |
TCIA-CPTAC-PDA_CPTAC-PDA-C3N-02010_0_1 | BDMAP_00000046 |
AbdomenCT-1K_Case_00056_0000 | BDMAP_00000047 |
TCIAColon_TCIAColon_0188_0_1 | BDMAP_00000048 |
AbdomenCT-1K_Case_00535_0000 | BDMAP_00000049 |
AMOS_amos_0059 | BDMAP_00000050 |
TotalSegmentator_s1374 | BDMAP_00000051 |
AbdomenCT-1K_Case_00162_0000 | BDMAP_00000052 |
autoPET_PETCT_2ce074c2ea | BDMAP_00000053 |
TCIA-CPTAC-PDA_CPTAC-PDA-C3N-03000_0_3 | BDMAP_00000054 |
MSD-Pancreas_pancreas_014 | BDMAP_00000055 |
Decathlon_spleen_33 | BDMAP_00000056 |
TCIAColon_TCIAColon_0166_0_3 | BDMAP_00000057 |
TCIA-LDCT_LDCT-L193_0_1 | BDMAP_00000058 |
KiTS21_img0286 | BDMAP_00000059 |
TCIAColon_TCIAColon_0232_0_2 | BDMAP_00000060 |
TotalSegmentator_s1348 | BDMAP_00000061 |
KiTS21_img0017 | BDMAP_00000062 |
TCIAColon_TCIAColon_0161_0_3 | BDMAP_00000063 |
MSD-Liver_liver_148 | BDMAP_00000064 |
TCIA-LDCT_LDCT-L219_0_1 | BDMAP_00000065 |
KiTS21_img0116 | BDMAP_00000066 |
TCIAColon_TCIAColon_0082_0_3 | BDMAP_00000067 |
AbdomenCT-1K_Case_00799_0000 | BDMAP_00000068 |
MSD-Colon_colon_012 | BDMAP_00000069 |
TotalSegmentator_s0429 | BDMAP_00000070 |
AMOS_amos_0044 | BDMAP_00000071 |
autoPET_PETCT_5de3ac617a | BDMAP_00000072 |
autoPET_PETCT_ded50b1e68 | BDMAP_00000073 |
Decathlon_lung_016 | BDMAP_00000074 |
Decathlon_hepaticvessel_005 | BDMAP_00000075 |
AMOS_amos_0159 | BDMAP_00000076 |
autoPET_PETCT_6170317f2e | BDMAP_00000077 |
Decathlon_lung_003 | BDMAP_00000078 |
TotalSegmentator_s0896 | BDMAP_00000079 |
TCIAColon_TCIAColon_0286_0_3 | BDMAP_00000080 |
autoPET_PETCT_2a78eed085 | BDMAP_00000081 |
MSD-Colon_colon_150 | BDMAP_00000082 |
autoPET_PETCT_61348439bf | BDMAP_00000083 |
Decathlon_liver_59 | BDMAP_00000084 |
autoPET_PETCT_b2f82ed4b9 | BDMAP_00000085 |
TCGA-BLCA_TCGA-BLCA-4Z-AA86_0_3 | BDMAP_00000086 |
Decathlon_pancreas_346 | BDMAP_00000087 |
autoPET_PETCT_d3dac0d1cd | BDMAP_00000088 |
AMOS_amos_0038 | BDMAP_00000089 |
KiTS19-21_case_00147 | BDMAP_00000090 |
LiTS_liver_38 | BDMAP_00000091 |
FLARE23Val_FLARE23_Ts_0016_0000 | BDMAP_00000092 |
Decathlon_pancreas_348 | BDMAP_00000093 |
Decathlon_hepaticvessel_431 | BDMAP_00000094 |
AbdomenCT-1K_Case_00773_0000 | BDMAP_00000095 |
MSD-Colon_colon_084 | BDMAP_00000096 |
TCIAColon_TCIAColon_0260_0_2 | BDMAP_00000097 |
autoPET_PETCT_90ea6a6aaf | BDMAP_00000098 |
TCIAColon_TCIAColon_0154_0_2 | BDMAP_00000099 |
LiTS_liver_71 | BDMAP_00000100 |
π§ Overview
We present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning.
π§Ύ Dataset CT Volumes Overview
The following public abdominal CT datasets are included in DeepTumorVQA.
Note: The number of volumes may differ from the original publications due to validation splits or removal of duplicates.
Dataset (Year) [Source] | # of Volumes | # of Centers | Dataset (Year) [Source] | # of Volumes | # of Centers |
---|---|---|---|---|---|
1. CHAOS (2018) π | 20 | 1 | 2. Pancreas-CT (2015) π | 42 | 1 |
3. BTCV (2015) π | 47 | 1 | 4. LiTS (2019) π | 131 | 7 |
5. CT-ORG (2020) π | 140 | 8 | 6. WORD (2021) π | 120 | 1 |
7. AMOS22 (2022) π | 200 | 2 | 8. KiTS (2020) π | 489 | 1 |
9β14. MSD CT Tasks (2021) π | 945 | 1 | 15. AbdomenCT-1K (2021) π | 1,050 | 12 |
16. FLAREβ23 (2022) π | 4,100 | 30 | 17. Trauma Detect. (2023) π | 4,711 | 23 |
To facilitate alignment between our VQA dataset and the original CT image sources, we follow the AbdomenAtlas naming rule and provide a mapping file that links each image ID in our dataset to its corresponding source identifier.
You can view the ID mapping CSV here: AbdomenAtlas_ID_mapping.csv
This file ensures traceability and reproducibility when working with external data references and annotations.
You may also email zzhou82@jh.edu for mapped full data and opportunities to collaborate in our future publications!
Each example in Tumor_VQA_dataset_V3.csv contains the following fields:
question_id
: A unique integer identifier for each VQA sample (e.g.,0
).image_id
: A string identifier for the corresponding CT volume or slice (e.g.,BDMAP_00000001
).spacing
: Image voxel spacing (e.g.,"[0.8222656 0.8222656 2.5 ]"
), stored as a string.shape
: The image dimensions (e.g.,"(512, 512, 339)"
), stored as a string.sex
: Binary patient sex (Male
,Female
).age
: Patient age in years, stored as a float64 (e.g.,65.0
).scanner
: Type of CT scanner used (e.g.,siemens
.contrast
: Indicates use of contrast agent (Non-contrast
,Arterial
,Venous
, etc.).question
: A natural-language question about the image.answer
: The corresponding expert-level answer to the question.multiple_choice_question
: Reformulation of the question as a multiple-choice item.correct_option
: The correct answer among multiple choices (a value from A to D).organ
: The anatomical structure referenced in the question.lesion
: The type of lesion involved (tumor
,cyst
, etc.).question_type
: The general category of the question (recognition
,measurement
,visual reasoning
,medical reasoning
, etc.).question_subtype
: A more granular subclassification (e.g.,lesion_counting
,organ_hu_measurement
, `lesion_type_classification, etc.).split
: Designates whether the sample belongs to thetrain
orvalidation
set.
You can load **DeepTumorVQA 1.0** directly using the π€ `datasets` library:
pip install datasets
from datasets import load_dataset
deep_tumor_vqa = load_dataset("tumor-vqa/DeepTumorVQA_1.0")
print(deep_tumor_vqa)
Acknowledgement and Disclosure of Funding
This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the Patrick J. McGovern Foundation Award.
Citation
@article{chen2025vision,
title={Are Vision Language Models Ready for Clinical Diagnosis? A 3D Medical Benchmark for Tumor-centric Visual Question Answering},
author={Chen, Yixiong and Xiao, Wenjie and Bassi, Pedro RAS and Zhou, Xinze and Er, Sezgin and Hamamci, Ibrahim Ethem and Zhou, Zongwei and Yuille, Alan},
journal={arXiv preprint arXiv:2505.18915},
year={2025}
}
- Downloads last month
- 194