Datasets:

ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}).

This happened while the csv dataset builder was generating data using

hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Question ID: int64
              Image ID: string
              spacing: string
              shape: string
              sex: string
              age: double
              scanner: string
              contrast: string
              question: string
              answer: string
              multiple-choice question: string
              correct option: string
              organ: string
              lesion: string
              question type: string
              question subtype: string
              split: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2259
              to
              {'original id': Value(dtype='string', id=None), 'AbdomenAtlas_id': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

original id
string
AbdomenAtlas_id
string
autoPET_PETCT_404f8c732f
BDMAP_00000001
TCIA-Pancreas-CT_PANCREAS_0039
BDMAP_00000002
TotalSegmentator_s0543
BDMAP_00000003
MSD-Colon_colon_195
BDMAP_00000004
TCIAColon_TCIAColon_0256_0_1
BDMAP_00000005
autoPET_PETCT_63464433c8
BDMAP_00000006
MSD-HepaticVessel_hepaticvessel_447
BDMAP_00000007
KiTS19-21_prediction_00280
BDMAP_00000008
WORD_word_0086
BDMAP_00000009
autoPET_PETCT_f637b5930b
BDMAP_00000010
autoPET_PETCT_49479d6e64
BDMAP_00000011
TCIAColon_TCIAColon_0300_0_1
BDMAP_00000012
MSD-HepaticVessel_hepaticvessel_200
BDMAP_00000013
TotalSegmentator_s0904
BDMAP_00000014
MSD-HepaticVessel_hepaticvessel_406
BDMAP_00000015
TCIA-LDCT_LDCT-L277_0_1
BDMAP_00000016
FLARE23Val_FLARE23_Ts_0084_0000
BDMAP_00000017
TotalSegmentator_s1089
BDMAP_00000018
TCIAColon_TCIAColon_0233_0_4
BDMAP_00000019
BTCV_img0034
BDMAP_00000020
TotalSegmentator_s0369
BDMAP_00000021
TCIAColon_TCIAColon_0249_0_2
BDMAP_00000022
KiTS21_img0228
BDMAP_00000023
MSD-Pancreas_pancreas_476
BDMAP_00000024
MSD-Hepatic_hepaticvessel_343
BDMAP_00000025
NIH-Lymph_NIH-LYMPH-ABD-041_0_0
BDMAP_00000026
MSD-Colon_colon_188
BDMAP_00000027
AbdomenCT-1K_Case_01035_0000
BDMAP_00000028
MSD-Hepatic_hepaticvessel_334
BDMAP_00000029
MSD-Colon_colon_139
BDMAP_00000030
autoPET_PETCT_b53ba7c6bf
BDMAP_00000031
autoPET_PETCT_5d553bf6b4
BDMAP_00000032
autoPET_PETCT_ba81e4b04b
BDMAP_00000033
KiTS21_img0268
BDMAP_00000034
Decathlon_hepaticvessel_325
BDMAP_00000035
KiTS23_case_00401
BDMAP_00000036
MSD-Hepatic_hepaticvessel_036
BDMAP_00000037
Decathlon_hepaticvessel_199
BDMAP_00000038
KiTS21_img0066
BDMAP_00000039
TCIAColon_TCIAColon_0262_0_3
BDMAP_00000040
autoPET_PETCT_f5c2c09846
BDMAP_00000041
TotalSegmentator_s0250
BDMAP_00000042
KiTS21_img0298
BDMAP_00000043
KiTS23_case_00512
BDMAP_00000044
MSD-Colon_colon_128
BDMAP_00000045
TCIA-CPTAC-PDA_CPTAC-PDA-C3N-02010_0_1
BDMAP_00000046
AbdomenCT-1K_Case_00056_0000
BDMAP_00000047
TCIAColon_TCIAColon_0188_0_1
BDMAP_00000048
AbdomenCT-1K_Case_00535_0000
BDMAP_00000049
AMOS_amos_0059
BDMAP_00000050
TotalSegmentator_s1374
BDMAP_00000051
AbdomenCT-1K_Case_00162_0000
BDMAP_00000052
autoPET_PETCT_2ce074c2ea
BDMAP_00000053
TCIA-CPTAC-PDA_CPTAC-PDA-C3N-03000_0_3
BDMAP_00000054
MSD-Pancreas_pancreas_014
BDMAP_00000055
Decathlon_spleen_33
BDMAP_00000056
TCIAColon_TCIAColon_0166_0_3
BDMAP_00000057
TCIA-LDCT_LDCT-L193_0_1
BDMAP_00000058
KiTS21_img0286
BDMAP_00000059
TCIAColon_TCIAColon_0232_0_2
BDMAP_00000060
TotalSegmentator_s1348
BDMAP_00000061
KiTS21_img0017
BDMAP_00000062
TCIAColon_TCIAColon_0161_0_3
BDMAP_00000063
MSD-Liver_liver_148
BDMAP_00000064
TCIA-LDCT_LDCT-L219_0_1
BDMAP_00000065
KiTS21_img0116
BDMAP_00000066
TCIAColon_TCIAColon_0082_0_3
BDMAP_00000067
AbdomenCT-1K_Case_00799_0000
BDMAP_00000068
MSD-Colon_colon_012
BDMAP_00000069
TotalSegmentator_s0429
BDMAP_00000070
AMOS_amos_0044
BDMAP_00000071
autoPET_PETCT_5de3ac617a
BDMAP_00000072
autoPET_PETCT_ded50b1e68
BDMAP_00000073
Decathlon_lung_016
BDMAP_00000074
Decathlon_hepaticvessel_005
BDMAP_00000075
AMOS_amos_0159
BDMAP_00000076
autoPET_PETCT_6170317f2e
BDMAP_00000077
Decathlon_lung_003
BDMAP_00000078
TotalSegmentator_s0896
BDMAP_00000079
TCIAColon_TCIAColon_0286_0_3
BDMAP_00000080
autoPET_PETCT_2a78eed085
BDMAP_00000081
MSD-Colon_colon_150
BDMAP_00000082
autoPET_PETCT_61348439bf
BDMAP_00000083
Decathlon_liver_59
BDMAP_00000084
autoPET_PETCT_b2f82ed4b9
BDMAP_00000085
TCGA-BLCA_TCGA-BLCA-4Z-AA86_0_3
BDMAP_00000086
Decathlon_pancreas_346
BDMAP_00000087
autoPET_PETCT_d3dac0d1cd
BDMAP_00000088
AMOS_amos_0038
BDMAP_00000089
KiTS19-21_case_00147
BDMAP_00000090
LiTS_liver_38
BDMAP_00000091
FLARE23Val_FLARE23_Ts_0016_0000
BDMAP_00000092
Decathlon_pancreas_348
BDMAP_00000093
Decathlon_hepaticvessel_431
BDMAP_00000094
AbdomenCT-1K_Case_00773_0000
BDMAP_00000095
MSD-Colon_colon_084
BDMAP_00000096
TCIAColon_TCIAColon_0260_0_2
BDMAP_00000097
autoPET_PETCT_90ea6a6aaf
BDMAP_00000098
TCIAColon_TCIAColon_0154_0_2
BDMAP_00000099
LiTS_liver_71
BDMAP_00000100
End of preview.

🧠 Overview

We present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning.


🧾 Dataset CT Volumes Overview

The following public abdominal CT datasets are included in DeepTumorVQA.
Note: The number of volumes may differ from the original publications due to validation splits or removal of duplicates.

Dataset (Year) [Source] # of Volumes # of Centers Dataset (Year) [Source] # of Volumes # of Centers
1. CHAOS (2018) πŸ”— 20 1 2. Pancreas-CT (2015) πŸ”— 42 1
3. BTCV (2015) πŸ”— 47 1 4. LiTS (2019) πŸ”— 131 7
5. CT-ORG (2020) πŸ”— 140 8 6. WORD (2021) πŸ”— 120 1
7. AMOS22 (2022) πŸ”— 200 2 8. KiTS (2020) πŸ”— 489 1
9–14. MSD CT Tasks (2021) πŸ”— 945 1 15. AbdomenCT-1K (2021) πŸ”— 1,050 12
16. FLARE’23 (2022) πŸ”— 4,100 30 17. Trauma Detect. (2023) πŸ”— 4,711 23

To facilitate alignment between our VQA dataset and the original CT image sources, we follow the AbdomenAtlas naming rule and provide a mapping file that links each image ID in our dataset to its corresponding source identifier.

You can view the ID mapping CSV here: AbdomenAtlas_ID_mapping.csv

This file ensures traceability and reproducibility when working with external data references and annotations.

You may also email zzhou82@jh.edu for mapped full data and opportunities to collaborate in our future publications!

πŸ“ Dataset QA Format

Each example in Tumor_VQA_dataset_V3.csv contains the following fields:

  • question_id: A unique integer identifier for each VQA sample (e.g., 0).
  • image_id: A string identifier for the corresponding CT volume or slice (e.g., BDMAP_00000001).
  • spacing: Image voxel spacing (e.g., "[0.8222656 0.8222656 2.5 ]"), stored as a string.
  • shape: The image dimensions (e.g., "(512, 512, 339)"), stored as a string.
  • sex: Binary patient sex (Male, Female).
  • age: Patient age in years, stored as a float64 (e.g., 65.0).
  • scanner: Type of CT scanner used (e.g., siemens.
  • contrast: Indicates use of contrast agent (Non-contrast, Arterial, Venous, etc.).
  • question: A natural-language question about the image.
  • answer: The corresponding expert-level answer to the question.
  • multiple_choice_question: Reformulation of the question as a multiple-choice item.
  • correct_option: The correct answer among multiple choices (a value from A to D).
  • organ: The anatomical structure referenced in the question.
  • lesion: The type of lesion involved (tumor, cyst, etc.).
  • question_type: The general category of the question (recognition, measurement, visual reasoning, medical reasoning, etc.).
  • question_subtype: A more granular subclassification (e.g., lesion_counting, organ_hu_measurement, `lesion_type_classification, etc.).
  • split: Designates whether the sample belongs to the train or validation set.

πŸ” Installation

You can load **DeepTumorVQA 1.0** directly using the πŸ€— `datasets` library:
pip install datasets
from datasets import load_dataset

deep_tumor_vqa = load_dataset("tumor-vqa/DeepTumorVQA_1.0")
print(deep_tumor_vqa)

Acknowledgement and Disclosure of Funding

This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the Patrick J. McGovern Foundation Award.


Citation

@article{chen2025vision,
  title={Are Vision Language Models Ready for Clinical Diagnosis? A 3D Medical Benchmark for Tumor-centric Visual Question Answering},
  author={Chen, Yixiong and Xiao, Wenjie and Bassi, Pedro RAS and Zhou, Xinze and Er, Sezgin and Hamamci, Ibrahim Ethem and Zhou, Zongwei and Yuille, Alan},
  journal={arXiv preprint arXiv:2505.18915},
  year={2025}
}

Downloads last month
194