text
stringlengths 0
828
|
---|
# below makes the pixmap half transparent
|
# painter = QtGui.QPainter(pixmap)
|
# painter.setCompositionMode(painter.CompositionMode_DestinationIn)
|
# painter.fillRect(pixmap.rect(), QtGui.QColor(0, 0, 0, 127))
|
# painter.end()
|
drag.setPixmap(pixmap)
|
drag.setHotSpot(QtCore.QPoint(pixmap.width()/2, pixmap.height()/2))
|
drag.setPixmap(pixmap)
|
self.dragActive.emit(True)
|
result = drag.exec_(QtCore.Qt.MoveAction)
|
QtGui.QApplication.restoreOverrideCursor()"
|
19,"def database(self):
|
""""""
|
Enters all the metadata into a database
|
""""""
|
import sqlite3
|
try:
|
os.remove('{}/metadatabase.sqlite'.format(self.reportpath))
|
except OSError:
|
pass
|
# Set the name of the database
|
db = sqlite3.connect('{}/metadatabase.sqlite'.format(self.reportpath))
|
# Create a cursor to allow access to the database
|
cursor = db.cursor()
|
# Set up the db
|
cursor.execute('''
|
CREATE TABLE IF NOT EXISTS Samples (
|
id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE,
|
name TEXT UNIQUE
|
)
|
''')
|
# Create a variable to store the names of the header values for each individual table
|
# This will store a set of all the headers from all the strains, as there can be some variability present, as
|
# not all analyses are available for all taxonomic groups
|
columns = dict()
|
for sample in self.metadata:
|
# Create a metadata object to store the new tables
|
data = MetadataObject()
|
data.name = sample.name
|
# Insert each strain name into the Samples table
|
cursor.execute('''
|
INSERT OR IGNORE INTO Samples (name)
|
VALUES ( ? )
|
''', (sample.name, ))
|
# Each header in the .json file represents a major category e.g. ARMI, GeneSeekr, commands, etc. and
|
# will be made into a separate table
|
for header in sample.datastore.items():
|
# Allow for certain analyses, such as core genome, not being performed on all strains
|
try:
|
# Key and value: data description and data value e.g. targets present: 1012, etc.
|
for key, value in sorted(header[1].datastore.items()):
|
# Only the values consisting of dictionaries are of interest
|
if type(value) == dict:
|
# Clean the column names so there are no issues entering names into the database
|
cleanedcolumn = self.columnclean(key)
|
# Set the table name
|
tablename = '{}_{}'.format(header[0].replace('.', '_'), cleanedcolumn)
|
# Create the table (if it doesn't already exist)
|
cursor.execute('''
|
CREATE TABLE IF NOT EXISTS {} (
|
sample_id INTEGER
|
)
|
'''.format(tablename))
|
# Add the attributes with the dictionaries (values) to the metadata object
|
setattr(data, tablename, GenObject(value))
|
for gene, result in sorted(value.items()):
|
# Add the data header to the dictionary
|
try:
|
columns[tablename].add(gene)
|
# Initialise the dictionary the first time a table name is encountered
|
except KeyError:
|
columns[tablename] = set()
|
columns[tablename].add(str(gene))
|
except (AttributeError, IndexError):
|
pass
|
self.tabledata.append(data)
|
# Iterate through the dictionary containing all the data headers
|
for table, setofheaders in sorted(columns.items()):
|
# Each header will be used as a column in the appropriate table
|
for cleanedcolumn in sorted(setofheaders):
|
# Alter the table by adding each header as a column
|
cursor.execute('''
|
ALTER TABLE {}
|
ADD COLUMN {} TEXT
|
'''.format(table, cleanedcolumn))
|
# Iterate through the samples and pull out the data for each table/column
|
# for sample in self.metadata:
|
for sample in self.tabledata:
|
# Find the id associated with each sample in the Sample table
|
cursor.execute('''
|
SELECT id from Samples WHERE name=?
|
''', (sample.name,))
|
sampleid = cursor.fetchone()[0]
|
# Add the sample_id to the table
|
cursor.execute('''
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.